Skip to content

Commit

Permalink
Merge branch 'main' of github.com:Ciela-Institute/tarp
Browse files Browse the repository at this point in the history
  • Loading branch information
adam-coogan committed Apr 21, 2023
2 parents 427fc2a + 9c77661 commit ebbffce
Showing 1 changed file with 70 additions and 0 deletions.
70 changes: 70 additions & 0 deletions scripts/correlated_gaussian.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
"""
Code to replicate the results in section 4.1: "Gaussian Toy Model" of the paper
Sampling-Based Accuracy Testing of Posterior Estimators for General Inference
"""

import numpy as np
import matplotlib.pyplot as plt
from tarp import get_drp_coverage

# Set random seed
np.random.seed(0)

# latex rendering:
plt.rc('font', **{'size': 10, 'family': 'serif', 'serif': ['Computer Modern']})
plt.rc('text', usetex=True)


def generate_psd_matrix(n):
# generate random array of appropriate size
arr_size = int(n * (n - 1) / 2)
arr = np.random.rand(arr_size)

# convert array to symmetric matrix
mat = np.zeros((n, n))
triu_indices = np.triu_indices(n, k=1)
mat[triu_indices] = arr
mat += mat.T

# check if matrix is positive semidefinite
eigenvals = np.linalg.eigvalsh(mat)
if np.all(eigenvals >= 0):
return mat
else:
# if not, add identity matrix to make it PSD
mat = mat + np.eye(n) * abs(eigenvals.min()) * 2
return mat


def generate_correlated_samples(num_samples, num_sims, num_dims):
""" Generate samples and true parameter values """
theta = np.random.uniform(low=-5, high=5, size=(num_sims, num_dims))
cov = [generate_psd_matrix(num_dims) for _ in range(num_sims)]
cov = np.concatenate(cov).reshape(num_sims, num_dims, num_dims)
samples = [np.random.multivariate_normal(mean=theta[i], cov=cov[i], size=num_samples) for i in range(num_sims)]
samples = np.stack(samples)
samples = samples.transpose(1, 0, 2)
theta = [np.random.multivariate_normal(mean=theta[i], cov=cov[i], size=1) for i in range(num_sims)]
theta = np.stack(theta)[:,0]
return samples, theta


def main():
""" Main function """
samples, theta = generate_correlated_samples(num_samples=1000, num_sims=100, num_dims=10)
alpha, ecp = get_drp_coverage(samples, theta, references='random', metric='euclidean')

fig, ax = plt.subplots(1, 1, figsize=(4, 4))
ax.plot([0, 1], [0, 1], ls='--', color='k')
ax.plot(alpha, ecp, label='DRP')
ax.legend()
ax.set_ylabel("Expected Coverage")
ax.set_xlabel("Credibility Level")
plt.show()


if __name__ == '__main__':
main()



0 comments on commit ebbffce

Please sign in to comment.