From 9a391e7578e93c2f928d81368993f2a461ebbd92 Mon Sep 17 00:00:00 2001 From: Pablo-Lemos Date: Wed, 15 Mar 2023 17:36:25 -0400 Subject: [PATCH 1/2] Added correlated Gaussian test --- scripts/correlated_gaussian.py | 74 ++++++++++++++++++++++++++++++++++ 1 file changed, 74 insertions(+) create mode 100644 scripts/correlated_gaussian.py diff --git a/scripts/correlated_gaussian.py b/scripts/correlated_gaussian.py new file mode 100644 index 0000000..df677d6 --- /dev/null +++ b/scripts/correlated_gaussian.py @@ -0,0 +1,74 @@ +""" +Code to replicate the results in section 4.1: "Gaussian Toy Model" of the paper +Sampling-Based Accuracy Testing of Posterior Estimators for General Inference +""" + +import numpy as np +import matplotlib.pyplot as plt +from tarp import get_drp_coverage + +# Set random seed +np.random.seed(0) + +# latex rendering: +plt.rc('font', **{'size': 10, 'family': 'serif', 'serif': ['Computer Modern']}) +plt.rc('text', usetex=True) + + +def generate_psd_matrix(n): + # generate random array of appropriate size + arr_size = int(n * (n - 1) / 2) + arr = np.random.rand(arr_size) + + # convert array to symmetric matrix + mat = np.zeros((n, n)) + triu_indices = np.triu_indices(n, k=1) + mat[triu_indices] = arr + mat += mat.T + + # check if matrix is positive semidefinite + eigenvals = np.linalg.eigvalsh(mat) + if np.all(eigenvals >= 0): + return mat + else: + # if not, add identity matrix to make it PSD + mat = mat + np.eye(n) * abs(eigenvals.min()) * 2 + return mat + + +def generate_correlated_samples(num_samples, num_sims, num_dims): + """ Generate samples and true parameter values """ + theta = np.random.uniform(low=-5, high=5, size=(num_sims, num_dims)) + cov = [generate_psd_matrix(num_dims) for _ in range(num_sims)] + cov = np.concatenate(cov).reshape(num_sims, num_dims, num_dims) + print(theta.shape, cov.shape) + samples = [np.random.multivariate_normal(mean=theta[i], cov=cov[i], size=num_samples) for i in range(num_sims)] + samples = np.stack(samples) + samples = samples.transpose(1, 0, 2) + #samples = np.random.multivariate_normal(mean=theta, cov=cov, size=(num_samples, num_sims, num_dims)) + theta = [np.random.multivariate_normal(mean=theta[i], cov=cov[i], size=1) for i in range(num_sims)] + theta = np.stack(theta)[:,0] + print(theta.shape, samples.shape) + #theta = np.random.multivariate_normal(mean=theta, cov=cov, size=(num_sims, num_dims)) + return samples, theta + + +def main(): + """ Main function """ + samples, theta = generate_correlated_samples(num_samples=1000, num_sims=100, num_dims=10) + alpha, ecp = get_drp_coverage(samples, theta, references='random', metric='euclidean') + + fig, ax = plt.subplots(1, 1, figsize=(4, 4)) + ax.plot([0, 1], [0, 1], ls='--', color='k') + ax.plot(alpha, ecp, label='DRP') + ax.legend() + ax.set_ylabel("Expected Coverage") + ax.set_xlabel("Credibility Level") + plt.show() + + +if __name__ == '__main__': + main() + + + From 9c776614e2e36d767442438fc711e30f33bb3934 Mon Sep 17 00:00:00 2001 From: Pablo-Lemos Date: Wed, 15 Mar 2023 17:36:56 -0400 Subject: [PATCH 2/2] Cleaned correlated gaussian test --- scripts/correlated_gaussian.py | 4 ---- 1 file changed, 4 deletions(-) diff --git a/scripts/correlated_gaussian.py b/scripts/correlated_gaussian.py index df677d6..afad01e 100644 --- a/scripts/correlated_gaussian.py +++ b/scripts/correlated_gaussian.py @@ -41,15 +41,11 @@ def generate_correlated_samples(num_samples, num_sims, num_dims): theta = np.random.uniform(low=-5, high=5, size=(num_sims, num_dims)) cov = [generate_psd_matrix(num_dims) for _ in range(num_sims)] cov = np.concatenate(cov).reshape(num_sims, num_dims, num_dims) - print(theta.shape, cov.shape) samples = [np.random.multivariate_normal(mean=theta[i], cov=cov[i], size=num_samples) for i in range(num_sims)] samples = np.stack(samples) samples = samples.transpose(1, 0, 2) - #samples = np.random.multivariate_normal(mean=theta, cov=cov, size=(num_samples, num_sims, num_dims)) theta = [np.random.multivariate_normal(mean=theta[i], cov=cov[i], size=1) for i in range(num_sims)] theta = np.stack(theta)[:,0] - print(theta.shape, samples.shape) - #theta = np.random.multivariate_normal(mean=theta, cov=cov, size=(num_sims, num_dims)) return samples, theta