-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg_to_ptcld.py
214 lines (175 loc) · 6.69 KB
/
img_to_ptcld.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import numpy as np
import torch
import open3d as o3d
import matplotlib.pyplot as plt
observations = torch.load("train_observations_lst.pt")
step_index = 3#8 #3 #8 #15 #8 #3
end = 5#len(observations[step_index])
rgb_image = observations[step_index]['rgb'][:end]#[:, 80:-80]
depth_image = observations[step_index]['depth'][:end]#[:, 80:-80]
semantic_image = observations[step_index]['semantic'][:end]
visualizer = o3d.visualization.Visualizer()
# ================================ image ==========================
# Add image to visualizer
visualizer.create_window()
image = o3d.geometry.Image(np.array(rgb_image))
visualizer.add_geometry(image)
# Set camera view
visualizer.get_render_option().background_color = np.asarray([0, 0, 0])
visualizer.get_view_control().set_zoom(0.5)
# visualizer.run()
# =================================== rgb depth ===================
#reate depth map
depth_map = o3d.geometry.Image(np.array(depth_image))
# Create point cloud from depth map
intrinsic = o3d.camera.PinholeCameraIntrinsic(width=640, height=480, fx=500, fy=500, cx=320, cy=240)
extrinsic = np.eye(4)
pcd = o3d.geometry.PointCloud.create_from_depth_image(depth_map, intrinsic, extrinsic)
# Create RGBD image from color and depth images
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
o3d.geometry.Image(np.array(rgb_image)),
o3d.geometry.Image(np.array(depth_image)),
depth_scale=1,
convert_rgb_to_intensity=False
)
vis = o3d.visualization.Visualizer()
vis.create_window()
vis.add_geometry(rgbd_image)
#vis.run()
# Create point cloud from RGBD image
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
rgbd_image,
o3d.camera.PinholeCameraIntrinsic(
width=640, height=480, fx=500, fy=500, cx=320, cy=240
)
)
# Convert point cloud to PyTorch tensor
points = np.array(pcd.points)
point_cloud = torch.from_numpy(points).float()
vis = o3d.visualization.Visualizer()
vis.create_window()
vis.add_geometry(pcd)
#vis.run()
#===================================== semantic =======================
import pandas as pd
df = pd.read_csv('matterport_category_mappings.tsv', sep=' +')
df['nyuClass'].unique().tolist().index('watch')
import seaborn as sns
classes = df['nyuClass'].unique()
n_colors = len(classes)
color_palette = sns.color_palette("husl", n_colors)
palette_rgb = []
for color in color_palette:
color_rgb = tuple(int(x * 255) for x in color)
palette_rgb.append(color_rgb)
class_color_dict = dict(zip(classes, palette_rgb))
df['nyuColor'] = df['nyuClass'].map(class_color_dict)
class_color_index_dict = dict(zip(classes, np.arange(len(classes))))
df['nyuColorIndex'] = df['nyuClass'].map(class_color_index_dict)
semantic_image = semantic_image.squeeze()
def int_to_nyuColor_Rgb(x):
point = df['nyuColor'][df['index'] == x].values
print(type(point))
if len(point) > 0:
return np.array(point[0])
sem_img_lst = []
class_lst = []
for x in semantic_image:
sem_img_sub_lst = []
for y in x:
point = df['nyuColor'][df['index'] == y].values
class_obj = df['nyuClass'][df['index'] == y].values
if len(class_obj) > 0:
class_lst.append(class_obj[0])
if len(point) > 0:
sem_img_sub_lst.append(point[0])
else:
sem_img_sub_lst.append(np.array([200,200,200], dtype=np.uint8))
# TODO -- unequal arrs this will crash
try:
sem_img_sub_arr = np.array(sem_img_sub_lst, dtype=np.uint8)
except ValueError:
import ipdb; ipdb.set_trace()
sem_img_lst.append(sem_img_sub_arr)
sem_img_arr = np.array(sem_img_lst, dtype=np.uint8)
#semantic_point_cloud = np.vectorize(int_to_nyuColor_Rgb)(semantic_image)
#mask = np.logical_not(np.equal(semeantic_point_cloud, None))
#semantic_point_cloud = semantic_point_cloud.compress(mask)
color_legend = {el:df['nyuColor'][df['nyuClass']==el].values[0] for el in class_lst}
print(color_legend)
def colored_background(r, g, b, text):
# https://stackoverflow.com/questions/70519979/printing-with-rgb-background
return f'\033[48;2;{r};{g};{b}m{text}\033[0m'
for class_name in color_legend:
rgb = color_legend[class_name]
print(colored_background(rgb[0], rgb[1], rgb[2], class_name))
#o3d.visualization.gui.Label.text = 'hello'
#o3d.visualization.gui.Label("hello4")
#text = o3d.geometry.Text("Legend", 10)
#text.paint_uniform_color([1, 1, 1]) # set text color
# Add point cloud and text to viewport
import colorsys
def make_rgb_palette(n=40):
HSV_tuples = [(x*1.0/n, 0.8, 0.8) for x in range(n)]
RGB_map = np.array(list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)))
return RGB_map
colors = make_rgb_palette(45)
semantic_colors = colors[semantic_image % 45] * 255
semantic_colors = semantic_colors.astype(np.uint8)
# Create RGBD image from color and depth images
semantic_depth_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
o3d.geometry.Image(np.array(sem_img_arr)),
o3d.geometry.Image(np.array(depth_image)),
depth_scale=1,
convert_rgb_to_intensity=False
)
#vis = o3d.visualization.Visualizer()
#vis.create_window()
#vis.add_geometry(semantic_depth_image)
#vis.run()
# Create point cloud from RGBD image
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
semantic_depth_image,
o3d.camera.PinholeCameraIntrinsic(
width=640, height=480, fx=500, fy=500, cx=320, cy=240
)
)
sem_img_flat_idx = semantic_image.reshape(640*end, 1)
sem_img_flat_col_arr = sem_img_arr.reshape(640*end, 1, 3)
points = np.asarray(pcd.points)
#C = np.array ( [ [255, 0, 01, [0, 255, 01, (0, 0, 255]])
fig = plt.figure()
ax = fig.add_subplot(111, projection = '3d')
ax.scatter(points[:,0],points[:,1], points[:,2]) # c = sem_img_flat_col_arr/255.0)
#ax. scatter(points, c = sem_img_flat_arr/255.0)
#ax.scatter(points[:,0],points[:,1], points[:,2]), c = sem_img_flat_col_arr/255.0)
import ipdb; ipdb.set_trace()
for i in range(len(sem_img_flat_col_arr)):
ax.scatter(points[i,0],points[i,1], points[i,2], color = sem_img_flat_col_arr[i]/255.0)
plt.show()
vis = o3d.visualization.Visualizer()
vis.create_window()
vis.add_geometry(pcd)
vis.run()
"""
# Extract point cloud data
fx = 525.0
fy = 525.0
cx = 319.5
cy = 239.5
depth_scale = 1000.0
depth_intrinsics = torch.tensor([[fx, 0, cx],
[0, fy, cy],
[0, 0, 1]])
depth_image = torch.tensor(depth_image.astype('float32'))
depth_image /= depth_scale
depth_image[depth_image == 0] = float('nan')
x, y = torch.meshgrid(torch.arange(0, depth_image.shape[0]),
torch.arange(0, depth_image.shape[1]))
z = depth_image
points = torch.stack([x * z, y * z, z], dim=-1)
points = points.reshape(-1, 3)
points = torch.matmul(points, torch.inverse(depth_intrinsics).t())
# Convert point cloud data to PyTorch tensor
points = torch.tensor(points)
"""