-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg_to_ptcld_func.py
65 lines (47 loc) · 1.81 KB
/
img_to_ptcld_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# ================================ semantic-depth image to point cloud function ==============
import numpy as np
import torch
import open3d as o3d
import colorsys
observations = torch.load("train_observations_lst.pt")
step_index = 3#8 #3 #8 #15 #8 #3
rgb_image = observations[step_index]['rgb']#[:, 80:-80]
depth_image = observations[step_index]['depth']#[:, 80:-80]
semantic_image = observations[step_index]['semantic']
def img_to_ptcld(semantic_image, depth_image):
'''
Take in semantic map and depth information that is associated with a
single observation
return: point cloud
'''
def make_rgb_palette(n=40):
HSV_tuples = [(x*1.0/n, 0.8, 0.8) for x in range(n)]
RGB_map = np.array(list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)))
return RGB_map
colors = make_rgb_palette(45)
semantic_colors = colors[semantic_image % 45] * 255
semantic_colors = semantic_colors.astype(np.uint8) #(480, 640, 1, 3)
# Create RGBD image from color and depth images
semantic_depth_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
o3d.geometry.Image(np.array(semantic_colors)),
o3d.geometry.Image(np.array(depth_image)),
depth_scale=1,
convert_rgb_to_intensity=False
)
vis = o3d.visualization.Visualizer()
vis.create_window()
vis.add_geometry(semantic_depth_image)
#vis.run()
# Create point cloud from RGBD image
import ipdb; ipdb.set_trace()
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
semantic_depth_image,
o3d.camera.PinholeCameraIntrinsic(
width=640, height=480, fx=500, fy=500, cx=320, cy=240
)
)
vis = o3d.visualization.Visualizer()
vis.create_window()
vis.add_geometry(pcd)
vis.run()
img_to_ptcld(semantic_image, depth_image)