-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_from_embeddings.py
934 lines (733 loc) · 36.6 KB
/
train_from_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
import contextlib
import datetime
import functools
import json
import math
import pathlib
import queue
import random
import threading
import time
import traceback
from typing import Union, Dict, Optional, Any, List, Tuple, Callable
import diffusers
import jax
import numpy as np
import optax
import smart_open
import tqdm
import transformers
import typer
import wandb
from diffusers.models.attention_flax import FlaxAttention, FlaxGEGLU
from diffusers.models.resnet_flax import FlaxResnetBlock2D
from flax import linen as nn
from flax.jax_utils import replicate
from flax.linen import normalization
from flax.linen.linear import _Conv as Conv, Dense, canonicalize_padding
from flax.training.train_state import TrainState
from jax import lax, numpy as jnp
from jax.experimental.compilation_cache import compilation_cache as cc
from jaxhelper import promote, clip_norm, ema, to_host, dot, if_flag, remat, index, attention, nan_default, map_fn, \
select, cast, cast_tree, shift, tree_dtype, set_flag
from namedtreemap import named_treemap
from optax import GradientTransformation
from smart_open import open
SCALE_DOWN_CONTEXT = 0.001
WEIGHT_DECAY_FOR_CONTEXT = 0 # .01
if pathlib.Path('/fsx/lucas').exists():
cc.initialize_cache("/fsx/lucas/cache")
elif pathlib.Path('~').expanduser().exists():
cc.initialize_cache(f"{str(pathlib.Path('~').expanduser())}/cache")
app = typer.Typer(pretty_exceptions_enable=False)
_UPLOAD_RETRIES = 8
_ACTIVATION = None
_MODEL_PARALLEL_DEVICES = 4
_COMPUTE_DTYPE = jnp.bfloat16
_AXIS = "batch"
if_shuffle = functools.partial(if_flag, "shuffle")
def device_id():
return lax.axis_index(_AXIS)
def isctx():
return ((device_id() - _MODEL_PARALLEL_DEVICES // 2) % _MODEL_PARALLEL_DEVICES) != 0
def _comm_fn(fn, permuted, postprocess):
inputs = cast(permuted, _COMPUTE_DTYPE)
# TODO: evaluate whether to use scan instead of for (drawback: less unroll)
# TODO: sum locally rather than psum (bottleneck: currently unknown permutations)
ys = [cast(fn(shift(inputs, _MODEL_PARALLEL_DEVICES // 2 - i, _AXIS)), jnp.float32) #
for i in range(_MODEL_PARALLEL_DEVICES)]
return cast(postprocess(ys), tree_dtype(permuted))
def comm(fn):
@if_shuffle(fn)
@jax.custom_gradient
def _fn(inp: jax.Array, *args):
devices = [list(range(j, j + _MODEL_PARALLEL_DEVICES)) #
for j in range(0, jax.device_count(), _MODEL_PARALLEL_DEVICES)]
def _grad(dy: jax.Array): # double-check this grad is correct
dys = lax.all_gather(dy, _AXIS, axis_index_groups=devices)
idx = 0
def _curried(inp):
nonlocal idx
local_dy = index(idx)(dys)
out, grad_fn = jax.vjp(fn, inp, *args)
d_inp, *d_args = grad_fn(cast_tree(local_dy, out))
d_inp = shift(d_inp, idx - _MODEL_PARALLEL_DEVICES // 2, _AXIS)
idx += 1
return d_inp, *d_args
return _comm_fn(_curried, inp, lambda x: jax.tree_util.tree_map(lambda *k: sum(k), *x))
def _select_sum(ys):
ys = lax.psum(ys, _AXIS, axis_index_groups=devices)
return select(device_id() % _MODEL_PARALLEL_DEVICES, ys)
return _comm_fn(lambda x: fn(x, *args), inp, _select_sum), _grad
return _fn
_old_attention = FlaxAttention.__call__
def multi_dot(x, *ws):
return [dot(x, w) for w in ws]
def dot_fn(*args):
xs = list(set(a for a, _ in args))
ws = [[w for x, w in args if x is outer] for outer in xs]
out = {(x, p): o for x, w in zip(xs, ws) for o, p in zip(comm(multi_dot)(x, *w), w)}
return [out[a] for a in args]
@if_shuffle(_old_attention)
def _new_attention(self: FlaxAttention, hidden_states: jax.Array, context: Optional[jax.Array] = None,
deterministic=True):
context = hidden_states if context is None else context
ks = [c.scope.param("kernel", c.kernel_init, (f, c.features), c.param_dtype).astype(_COMPUTE_DTYPE) for c, f in (
(self.query, hidden_states.shape[-1]), (self.key, context.shape[-1]), (self.value, context.shape[-1]),
(self.proj_attn, self.value.features))]
pb = self.proj_attn.scope.param('bias', self.proj_attn.bias_init, (self.proj_attn.features,),
self.proj_attn.param_dtype)
return attention(hidden_states, context, *ks, pb, self.scale, self.heads, dot_fn=dot_fn)
FlaxAttention.__call__ = _new_attention
def _normalize(mdl, x, mean, var, reduction_axes, feature_axes, dtype, param_dtype, epsilon: float, use_bias: bool,
use_scale: bool, bias_init, scale_init):
reduction_axes = normalization._canonicalize_axes(x.ndim, reduction_axes)
feature_axes = normalization._canonicalize_axes(x.ndim, feature_axes)
stats_shape = list(x.shape)
for axis in reduction_axes:
stats_shape[axis] = 1
mean = mean.reshape(stats_shape)
var = var.reshape(stats_shape)
feature_shape = [1] * x.ndim
reduced_feature_shape = []
for ax in feature_axes:
feature_shape[ax] = x.shape[ax]
reduced_feature_shape.append(x.shape[ax])
if use_scale:
scale = mdl.param('scale', scale_init, reduced_feature_shape, param_dtype).reshape(feature_shape)
else:
scale = 1
if use_bias:
bias = mdl.param('bias', bias_init, reduced_feature_shape, param_dtype).reshape(feature_shape)
else:
bias = 0
act = _ACTIVATION # copy to ensure it's the same value during backward pass
@remat
def _fn(x, m, v, s, b):
original_dtype = x.dtype
x = x.astype(jnp.float32)
y = (x - m) * s * lax.rsqrt(v + epsilon) + b
if act is None:
return y
return act(y).astype(original_dtype)
y = _fn(x, mean, var, scale, bias)
return jnp.asarray(y, dtype)
normalization._normalize = _normalize
@contextlib.contextmanager
def set_activation(x):
global _ACTIVATION
try:
_ACTIVATION = x
yield
finally:
_ACTIVATION = None
def _new_resnet(self: FlaxResnetBlock2D, hidden_states: jax.Array, temb: jax.Array,
deterministic: bool = True) -> jax.Array:
residual = hidden_states
with set_activation(nn.swish):
hidden_states = self.norm1(hidden_states)
hidden_states = self.conv1(hidden_states)
temb = self.time_emb_proj(nn.swish(temb))
temb = jnp.expand_dims(jnp.expand_dims(temb, 1), 1)
hidden_states = hidden_states + temb
with set_activation(nn.swish):
hidden_states = self.norm2(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
residual = self.conv_shortcut(residual)
return hidden_states + residual
FlaxResnetBlock2D.__call__ = _new_resnet
@remat
def _geglu_fn(s):
hidden_linear, hidden_gelu = jnp.split(s, 2, axis=2)
return hidden_linear * nn.gelu(hidden_gelu)
def _new_geglu(self: FlaxGEGLU, hidden_states, deterministic=True):
return _geglu_fn(self.proj(hidden_states))
FlaxGEGLU.__call__ = _new_geglu
_original_conv_call = Conv.__call__
_original_dense_call = Dense.__call__
def _conv_dimension_numbers(input_shape):
"""Computes the dimension numbers based on the input shape."""
ndim = len(input_shape)
lhs_spec = (0, ndim - 1) + tuple(range(1, ndim - 1))
rhs_spec = (ndim - 1, ndim - 2) + tuple(range(0, ndim - 2))
out_spec = lhs_spec
return lax.ConvDimensionNumbers(lhs_spec, rhs_spec, out_spec)
@if_shuffle(_original_conv_call)
def _wrapped_conv_call(self: Conv, inputs: jax.Array) -> jax.Array:
kernel_size = tuple(self.kernel_size)
in_features = jnp.shape(inputs)[-1]
kernel_shape = kernel_size + (in_features // self.feature_group_count, self.features)
kernel = self.scope.param("kernel", self.kernel_init, kernel_shape, self.param_dtype)
use_bias = self.use_bias
if use_bias:
bias = self.scope.param("bias", self.bias_init, (self.features,), self.param_dtype)
else:
bias = None
kernel, bias = kernel.astype(self.dtype), bias.astype(self.dtype)
def maybe_broadcast(x) -> Tuple[int, ...]:
if x is None:
# backward compatibility with using None as sentinel for
# broadcast 1
x = 1
if isinstance(x, int):
return (x,) * len(kernel_size)
return tuple(x)
# Combine all input batch dimensions into a single leading batch axis.
num_batch_dimensions = inputs.ndim - (len(kernel_size) + 1)
if num_batch_dimensions != 1:
input_batch_shape = inputs.shape[:num_batch_dimensions]
total_batch_size = int(np.prod(input_batch_shape))
flat_input_shape = (total_batch_size,) + inputs.shape[num_batch_dimensions:]
inputs = jnp.reshape(inputs, flat_input_shape)
# self.strides or (1,) * (inputs.ndim - 2)
strides = maybe_broadcast(self.strides)
input_dilation = maybe_broadcast(self.input_dilation)
kernel_dilation = maybe_broadcast(self.kernel_dilation)
dimension_numbers = _conv_dimension_numbers(inputs.shape)
if self.mask is not None and self.mask.shape != kernel_shape:
raise ValueError(f'Mask needs to have the same shape as weights. Shapes are: {self.mask.shape}, '
f'{kernel_shape}')
if self.mask is not None:
kernel *= self.mask
padding_lax = canonicalize_padding(self.padding, len(kernel_size))
inner_padding = "VALID" if padding_lax in ("CIRCULAR", "CAUSAL") else padding_lax
@comm
def conv(x, w):
return self.conv_general_dilated(x, w, strides, inner_padding, lhs_dilation=input_dilation,
rhs_dilation=kernel_dilation, dimension_numbers=dimension_numbers,
feature_group_count=self.feature_group_count, precision=self.precision)
@remat
def _outer(inputs: jax.Array, kernel: jax.Array, bias: Optional[jax.Array]) -> jax.Array:
if padding_lax == 'CIRCULAR':
kernel_size_dilated = [(k - 1) * d + 1 for k, d in zip(kernel_size, kernel_dilation)]
zero_pad: List[Tuple[int, int]] = [(0, 0)]
pads = zero_pad + [((k - 1) // 2, k // 2) for k in kernel_size_dilated] + [(0, 0)]
inputs = jnp.pad(inputs, pads, mode='wrap')
elif padding_lax == 'CAUSAL':
if len(kernel_size) != 1:
raise ValueError('Causal padding is only implemented for 1D convolutions.')
left_pad = kernel_dilation[0] * (kernel_size[0] - 1)
pads = [(0, 0), (left_pad, 0), (0, 0)]
inputs = jnp.pad(inputs, pads)
y = conv(inputs, kernel)
if bias is not None:
y = y.astype(bias.dtype)
bias = bias.reshape((1,) * (y.ndim - bias.ndim) + bias.shape)
y += bias
if num_batch_dimensions != 1:
output_shape = input_batch_shape + y.shape[1:]
y = jnp.reshape(y, output_shape)
return y
return _outer(inputs, kernel.astype(_COMPUTE_DTYPE), bias).astype(inputs.dtype)
@if_shuffle(_original_dense_call)
def _wrapped_dense_call(self: Dense, inputs: jax.Array) -> jax.Array:
kernel = self.scope.param('kernel', self.kernel_init, (jnp.shape(inputs)[-1], self.features), self.param_dtype)
if self.use_bias:
bias = self.scope.param('bias', self.bias_init, (self.features,), self.param_dtype)
else:
bias = None
kernel, bias = kernel.astype(self.dtype), bias.astype(self.dtype)
@remat
def _outer(x: jax.Array, kernel: jax.Array, bias: Optional[jax.Array]) -> jax.Array:
y = comm(dot)(x, kernel)
if bias is not None:
y = y.astype(bias.dtype)
y += jnp.reshape(bias, (1,) * (y.ndim - 1) + (-1,))
return y
return _outer(inputs, kernel.astype(_COMPUTE_DTYPE), bias).astype(inputs.dtype)
# synchronise everywhere to ensure we don't get into a pseudo-MoE situation where different sequence items see
# different parameters but instead always pretend it's a sliding window
Dense.__call__ = _wrapped_dense_call
Conv.__call__ = _wrapped_conv_call
def dict_to_array_dispatch(v):
if isinstance(v, np.ndarray):
if v.shape == ():
return dict_to_array_dispatch(v.item())
if v.dtype == object:
raise ValueError(str(v))
return v
elif isinstance(v, dict):
return dict_to_array(v)
elif isinstance(v, (list, tuple)):
return list(zip(*sorted(dict_to_array(dict(enumerate(v))).items())))[1]
else:
return dict_to_array(v)
def dict_to_array(x):
new_weights = {}
for k, v in dict(x).items():
new_weights[k] = dict_to_array_dispatch(v)
return new_weights
USE_FSDP = jax.device_count() // _MODEL_PARALLEL_DEVICES >= 4
def scale_by_laprop(b1: float, b2: float, lb1: float, lb2: float, eps: float, lr: optax.Schedule,
clip: float = 1e-2) -> GradientTransformation: # adam+lion
def zero(x):
return jnp.zeros_like(x, dtype=jnp.bfloat16)
def init_fn(params):
count = jnp.zeros((), dtype=jnp.int64)
return {"mu": jax.tree_util.tree_map(zero, params), "nu": jax.tree_util.tree_map(zero, params), "count": count}
def update_fn(updates, state, params=None):
count = state["count"] + 1
def get_update(name: str, grad: jax.Array, param: jax.Array, mu: jax.Array, nu: jax.Array):
dtype = mu.dtype
grad, param, mu, nu = promote(nan_default((grad, param, mu, nu), 0))
g_norm = clip_norm(grad, 1e-8)
p_norm = clip_norm(param, 1e-3)
grad *= nan_default(lax.min(p_norm / g_norm * clip, 1.), 1.)
nuc, nu = ema(lax.square(grad), nu, b2, count)
grad /= nan_default(lax.max(lax.sqrt(nuc), eps), 1)
muc, mu = ema(grad, mu, b1, count)
name = '|'.join(map(str, name)).lower()
update = lax.sign(muc)
update *= jnp.linalg.norm(muc) / clip_norm(update, 1e-8)
update += param * isctx() * (param.ndim > 1) * ("kernel" in name) * WEIGHT_DECAY_FOR_CONTEXT
update *= -lr(count)
return nan_default((update, mu.astype(dtype), nu.astype(dtype)), 0)
updates, mus, nus = named_treemap(get_update, updates, params, state["mu"], state["nu"])
return updates, {"count": count, "mu": mus, "nu": nus}
return GradientTransformation(init_fn, update_fn)
def log(*args, **kwargs):
print(f'{datetime.datetime.now()} | ', *args, **kwargs)
def distance(x: jax.Array, y: jax.Array) -> Tuple[jax.Array, jax.Array]:
dist = x - y
dist_sq = lax.square(dist).mean()
dist_abs = lax.abs(dist).mean()
return dist_sq / jax.device_count(), dist_abs / jax.device_count()
def to_img(x: jax.Array) -> wandb.Image:
return wandb.Image(x.reshape(-1, *x.shape[-2:])) # flatten context dim into height, keep width + channels const
def tile(x: jax.Array, mul: int):
return lax.broadcast_in_dim(x, (mul, *x.shape), tuple(range(1, 1 + x.ndim))).reshape(mul * x.shape[0], *x.shape[1:])
def to_nchw(x: jax.Array):
return x.transpose(0, x.ndim - 1, *range(1, x.ndim - 1))
def to_nhwc(x: jax.Array):
return x.transpose(0, *range(2, x.ndim), 1)
def all_to_all(x, split=1):
out = lax.all_to_all(x.reshape(1, -1, *x.shape[1:]), _AXIS, split, 0, tiled=True)
return out.reshape(jax.device_count(), -1, *out.shape[3:])
def all_to_all_batch(batch: Dict[str, Union[np.ndarray, int]]) -> Dict[str, Union[np.ndarray, int]]:
return {"mean": all_to_all(batch["mean"], 1), "std": all_to_all(batch["std"], 1),
"encoded": all_to_all(batch["encoded"], 1), "frame_ids": all_to_all(batch["frame_ids"], 1)}
def if_usefsdp(fn):
def _fn(self, x, *args, **kwargs):
if USE_FSDP:
return fn(self, x, *args, **kwargs)
return x
return _fn
class Sharding:
def __init__(self, xs):
arrays, self.tree = jax.tree_util.tree_flatten(xs)
self.shapes = [x.shape for x in arrays]
self.sizes = [x.size for x in arrays]
self.cum_sizes = list(np.cumsum(self.sizes))
self.total_size = self.cum_sizes[-1]
self.partitions = [list(range(i, jax.device_count(), _MODEL_PARALLEL_DEVICES)) #
for i in range(_MODEL_PARALLEL_DEVICES)]
self.partition_size = len(self.partitions[0])
self.comm_args = {"axis_name": _AXIS, "axis_index_groups": self.partitions}
@if_usefsdp
def prepare_shard(self, xs: Any, fill_value: float = 0) -> jax.Array:
arrays, _ = jax.tree_util.tree_flatten(xs)
concat = jnp.concatenate([x.reshape(-1) for x in arrays])
size = concat.shape[0]
if size % self.partition_size:
padding = jnp.full(((-size) % self.partition_size,), fill_value, dtype=concat.dtype)
concat = jnp.concatenate([concat, padding])
slice_size = size // self.partition_size
# we want each device to store a small section of each tensor, so we can remat them one at a time
return concat.reshape(slice_size, -1)
@if_usefsdp
def shard(self, xs: Any, fill_value: float = 0):
return lax.dynamic_index_in_dim(self.prepare_shard(xs, fill_value), device_id(), axis=1, keepdims=False)
@if_usefsdp
def unshard(self, x: jax.Array):
x = lax.all_gather(x, **self.comm_args, axis=1).reshape(-1)
arrays = [x[start:end].reshape(shape) #
for start, end, shape in zip([0] + self.cum_sizes, self.cum_sizes, self.shapes)]
return self.tree.unflatten(arrays)
def shard_via_psum_scatter(self, xs: Any, fill_value: float = 0):
if not USE_FSDP:
return lax.psum(xs, **self.comm_args)
return lax.psum_scatter(self.prepare_shard(xs, fill_value), **self.comm_args, scatter_dimension=1).reshape(-1)
def _scale_down_dense(prefix, x):
prefix = ('|'.join(map(str, prefix))).lower()
if 'kernel' not in prefix or x.ndim < 2:
return x
return x * SCALE_DOWN_CONTEXT
def get_train_step(unet: diffusers.FlaxUNet2DConditionModel, resolution: int, unc: np.ndarray,
noise_scheduler: diffusers.FlaxDDIMScheduler, sched_state: Any, sampling_steps: int,
guidance: List[int], sharding: Sharding, weight_ema: float):
def unet_fn(noise, encoded, timesteps, params, frame_ids):
noise = lax.stop_gradient(noise) + params["input_embedding"][frame_ids].reshape(-1, 4, 1, 1)
with set_flag("shuffle"):
return unet.apply({"params": params}, noise, timesteps,
lax.stop_gradient(encoded)).sample
def sample(params: jax.Array, p_ema: jax.Array, hidden_mode, encoded, ema_step: jax.Array, frame_ids: jax.Array):
if USE_FSDP:
params, p_ema = ema(p_ema, params, weight_ema, ema_step)
params = sharding.unshard(params)
latents = to_nchw(hidden_mode) * 0.18215
encoded = jnp.concatenate([unc, encoded], 0).astype(jnp.float32)
state = noise_scheduler.set_timesteps(sched_state, sampling_steps)
def _outer(_, g):
def _step(latents, i):
pred = unet_fn(tile(latents, 2), encoded, i, params, frame_ids)
pred = pred.reshape(2, -1, *pred.shape[1:])
pred = jnp.einsum("cbhwf,c->bhwf", pred, g)
return noise_scheduler.step(state, pred, i, latents).prev_sample, None
out, _ = lax.scan(_step, noise, state.timesteps)
return None, out
structured = jax.random.normal(jax.random.PRNGKey(0), (1, *latents.shape[1:]), latents.dtype)
local_prngkey = jax.random.PRNGKey(device_id())
_, local_prngkey = jax.random.split(local_prngkey)
noise = jax.random.normal(local_prngkey, structured.shape, latents.dtype) # different perturbation for devices
t0 = jnp.full((), len(noise_scheduler), jnp.int32)
noise = noise_scheduler.add_noise(state, structured, noise, t0) # keeps structure while adding perturbation
noise = noise * state.init_noise_sigma
_, out = lax.scan(_outer, None, jnp.array([[1 - g, g] for g in guidance], dtype=latents.dtype))
out = to_nhwc(out[:, 0])
return jnp.concatenate([hidden_mode, out / 0.18215]), p_ema
def train_step(outer_state: TrainState, batch: Dict[str, jax.Array], p_ema: jax.Array, do_sample: jax.Array,
ema_step: jax.Array, seed: jax.Array):
batch = all_to_all_batch(batch)
params = outer_state.params
cond = jnp.logical_and(isctx(), outer_state.step == 0).astype(jnp.int32)
params = lax.switch(cond, [lambda: params, lambda: named_treemap(_scale_down_dense, params)])
outer_state = outer_state.replace(params=params)
new_img, p_ema = lax.switch(do_sample, [
lambda: (jnp.zeros((len(guidance) + 1, resolution // 8, resolution // 8, 4), dtype=jnp.float32), p_ema),
lambda: sample(outer_state.params, p_ema, batch["mean"][0], batch["encoded"][0], ema_step,
batch["frame_ids"][0])])
def _loss(params, inp):
noisy_latents, target, t0, encoded, frame_ids = inp
unet_pred = unet_fn(noisy_latents, encoded[0].astype(jnp.float32), t0, params, frame_ids)
return distance(unet_pred, target)
def _outer(state: TrainState, x):
params = sharding.unshard(state.params)
scalars, grads = jax.value_and_grad(_loss, has_aux=True)(params, x)
grads = sharding.shard_via_psum_scatter(grads)
return state.apply_gradients(grads=grads), scalars
seed, time_key, latent_key, noise_key = jax.random.split(seed, 4)
latents = batch["mean"] + batch["std"] * jax.random.normal(latent_key, batch["std"].shape)
latents = latents.transpose(0, 1, latents.ndim - 1, *range(2, latents.ndim - 1)) * 0.18215
noise = jax.random.normal(noise_key, latents.shape)
timesteps = jax.random.randint(time_key, (noise.shape[0],), 0, len(noise_scheduler))
noisy_latents = noise_scheduler.add_noise(sched_state, latents, noise, timesteps)
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(sched_state, latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
outer_state, outer_scalars = lax.scan(_outer, outer_state, (noisy_latents, target, timesteps, batch["encoded"],
batch["frame_ids"]))
return outer_state, p_ema, lax.psum(map_fn(jnp.ravel)(outer_scalars), _AXIS), new_img, device_id(), seed
return train_step
class DataLoader:
def __init__(self, path: list, context: int, batch: int, prefetch: int = 4, seed: int = 0):
"""
Example filenames:
gs://video-us/data/0/FeGMU3fh-kA_98_image_embd.np
gs://video-us/data/0/FeGMU3fh-kA_99_image_embd.np
gs://video-us/data/0/Fhz6scjQK2Q_214_image_embd.np
gs://video-us/data/0/Fhz6scjQK2Q_214_subtitles.txt
gs://video-us/data/0/Fhz6scjQK2Q_214_text_embd.np
gs://video-us/data/0/FuujXU_4JjE_130_image_embd.np
gs://video-us/data/0/FuujXU_4JjE_130_subtitles.txt
gs://video-us/data/0/FuujXU_4JjE_130_text_embd.np
gs://video-us/data/0/FuujXU_4JjE_131_image_embd.np
"""
self.batch = batch
self.context = context
path = path[len('gs://'):]
bucket = path.split('/')[0]
self.prefix = f'gs://{bucket}/'
with open("list.json", 'r') as f:
self.files = json.load(f)
self.rng = random.Random(seed)
self.rng.shuffle(self.files)
k, v = self.files[0]
self.shape = self._load(f'{k}_{v[0]}_image_embd.np', 'mean')[0].shape
self.context_per_object = self.shape[0] * self.shape[1]
self.running = False
self.thread: Optional[threading.Thread] = None
self.batch_queue = queue.Queue(prefetch)
@contextlib.contextmanager
def _open(self, path: str, mode: str):
with open(f'{self.prefix}{path}', mode) as f:
yield f
def _load(self, path: str, *keys: str) -> List[np.ndarray]:
values = []
with self._open(path, "rb") as f:
embed = np.load(f, allow_pickle=True)
for k in keys:
out = embed[k]
if out.dtype == np.dtype('V2'):
out.dtype = jnp.bfloat16
values.append(out.astype(jnp.float32))
return values
def _flatten(self, x: List[np.ndarray], offset: int = 0):
x = np.concatenate(x)
batch, ctx, *_ = x.shape
x = x.reshape(batch * ctx, 1, *x.shape[2:])
return x[offset:offset + self.context]
def _worker(self):
required_samples = int(math.ceil(self.context / self.context_per_object))
batch = []
for path, indices in self.files:
if len(indices) < required_samples:
continue
first_index = indices[0]
text_embd = self._load(f'{path}_{first_index}_text_embd.np', 'encoded')
text_embd = self._flatten(text_embd)
if len(indices) - required_samples == 0:
start = 0
else:
start = 0
# start = self.rng.randint(0, len(indices) - required_samples)
embds = [self._load(f'{path}_{v}_image_embd.np', "std", "mean") #
for v in indices[start:start + required_samples]]
std, mean = zip(*embds)
# offset = self.rng.randint(0, required_samples * self.context_per_object - self.context)
offset = 0
std = self._flatten(std, offset)
mean = self._flatten(mean, offset)
with self._open(f'{path}_{first_index}_subtitles.txt', 'r') as f:
subtitles = f.read()
start = start * self.context_per_object + offset
batch.append((text_embd, std, mean, subtitles, np.arange(start, start + self.context)))
if len(batch) == self.batch:
text_embd, std, mean, subtitles, frame_ids = [np.stack(x) for x in zip(*batch)]
self.batch_queue.put({"encoded": text_embd, "std": std, "mean": mean, "subs": subtitles,
"frame_ids": frame_ids})
batch.clear()
self.running = False
def _start(self):
if self.running:
return
self.running = True
self.thread = threading.Thread(target=self._worker)
self.thread.start()
return
def __iter__(self):
self._start()
while self.running:
try:
yield self.batch_queue.get(timeout=60)
except queue.Empty:
continue
def load(path: str, prototype: Dict[str, jax.Array]):
try:
with smart_open.open(path + ".np", 'rb') as f:
params = list(zip(*sorted([(int(i), v) for i, v in np.load(f).items()])))[1]
except:
with smart_open.open(path + ".np", 'rb') as f:
params = \
list(zip(*sorted([(int(i), v) for i, v in np.load(f, allow_pickle=True)["arr_0"].item().items()])))[1]
_, tree = jax.tree_util.tree_flatten(prototype)
return tree.unflatten(params)
def get_uncond_embds(base_model: str, clip_tokens: int):
text_encoder = transformers.FlaxCLIPTextModel.from_pretrained(base_model, jnp.float32, subfolder="text_encoder")
tokenizer = transformers.CLIPTokenizer.from_pretrained(base_model, subfolder="tokenizer")
unconditioned_tokens = tokenizer([""], padding="max_length", max_length=clip_tokens, return_tensors="np")
return text_encoder(unconditioned_tokens["input_ids"])[0]
def log_loss(epoch: int, subs: np.ndarray, i: int, do_sample: bool, scalars, samples, run: Any, start_time: int,
guidance: List[float], eval_path: str, lsteps: int, state):
if state is None:
step = 0
loss_history = []
else:
step, loss_history = state
step += 1
step_id = step * lsteps
i *= lsteps
sclr = to_host(scalars)
log("To host")
if do_sample:
samples = to_host(samples, lambda x: x)
s_mode, *rec = np.split(samples, 1 + len(guidance), 1)
for _ in range(_UPLOAD_RETRIES):
try:
with smart_open.open(eval_path + f"{step_id}.npz", "wb") as f:
np.savez(f, **{f"guidance{g}": r for g, r in zip(guidance, rec)}, mode=s_mode, subs=subs)
except:
log("failed to write guidance checkpoint")
traceback.print_exc()
else:
break
log("Finished post-processing samples")
timediff = time.time() - start_time
sclr = [[float(x) for x in val] for val in sclr]
log("Losses:", sclr[0])
for offset, (unet_sq, unet_abs) in enumerate(zip(*sclr)):
vid_per_day = step_id / timediff * 24 * 3600 * jax.device_count()
loss_history.append(unet_sq)
loss_history = loss_history[-512:]
vals = {"U-Net MSE/Total": unet_sq, "U-Net MAE/Total": unet_abs, "GlobalStep": step_id + offset - lsteps,
"Step": i + offset - lsteps, "Epoch": epoch, "U-Net MSE/Median 32": np.median(loss_history[-32:]),
"U-Net MSE/Median 128": np.median(loss_history[-128:]),
"U-Net MSE/Median 512": np.median(loss_history[-512:]),
"U-Net MSE/Mean 32": np.mean(loss_history[-32:]), "U-Net MSE/Mean 128": np.mean(loss_history[-128:]),
"U-Net MSE/Mean 512": np.mean(loss_history[-512:])}
if offset == lsteps - 1:
vals.update({"Runtime": timediff, "Speed/Videos per Day": vid_per_day, "Speed/Frames per Day": vid_per_day})
run.log(vals, step=(step - 1) * lsteps + offset)
return step, loss_history
class Pipeline:
def __init__(self, fn: Callable, length: int = 16, **kwargs):
self.length = length
self.cond = threading.Condition()
self.pipe = []
self.fn = fn
self.running = False
self.thread: Optional[threading.Thread] = None
self.kwargs = kwargs
self.start()
def _loop(self):
start_time = time.time()
state = None
while True:
with self.cond:
if len(self.pipe) < self.length and not any(p[1] for p in self.pipe):
self.cond.wait()
if len(self.pipe) < self.length and not any(p[1] for p in self.pipe):
continue
if len(self.pipe) > 2 * self.length:
log(f"\nWARNING: Pipeline has {len(self.pipe)} elements, but upload can't keep up\n")
values, _ = self.pipe.pop(0)
state = self.fn(*values, start_time=start_time, state=state, **self.kwargs)
def start(self):
if self.running:
return
self.thread = threading.Thread(target=self._loop)
self.thread.start()
def put(self, *item, flush=False):
self.pipe.append((item, flush))
with self.cond:
self.cond.notify_all()
# TODO: Use EMA to improve sample quality
@app.command()
def main(lr: float = 1e-5, beta1: float = 0.9, beta2: float = 0.99, lion_beta1: float = 0.9, lion_beta2: float = 0.99,
eps: float = 1e-16, lr_halving_every_n_steps: int = 2 ** 16, warmup_steps: int = 1024, #
data_path: str = "gs://video-us/data/0/", batch_prefetch: int = 4, resolution: int = 1024,
clip_tokens: int = 77, #
save_interval: int = 4096, overwrite: bool = True, base_model: str = "flax/stable-diffusion-2-1",
eval_path: str = f"gs://video-us/eval-embeddings/{datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}/{jax.process_index()}/",
base_path: str = "gs://video-us/checkpoint_2", #
guidance: List[int] = typer.Option([1, 4, 7, 10]), sample_interval: int = 8192, sampling_steps: int = 1000,
weight_ema_beta: float = 0.999, #
seed: int = 0):
data = DataLoader(data_path, jax.device_count(), jax.local_device_count(), batch_prefetch, seed)
run = wandb.init(entity="ttv", project="ttv")
unet, unet_params = diffusers.FlaxUNet2DConditionModel.from_pretrained(base_model, jnp.float32, subfolder="unet")
noise_scheduler, sched_state = diffusers.FlaxDDIMScheduler.from_pretrained(base_model, subfolder="scheduler")
unet: diffusers.FlaxUNet2DConditionModel = unet
noise_scheduler: diffusers.FlaxDDIMScheduler = noise_scheduler
if not overwrite:
log("Loading..")
weights = [load(f"/home/ubuntu/unet{i}", unet_params) for i in range(_MODEL_PARALLEL_DEVICES)]
log("Finished")
lr_sched = optax.warmup_exponential_decay_schedule(0, lr, warmup_steps, lr_halving_every_n_steps, 0.5)
optimizer = scale_by_laprop(beta1, beta2, lion_beta1, lion_beta2, eps, lr_sched)
sharding = Sharding(unet_params)
train_step = get_train_step(unet, resolution, get_uncond_embds(base_model, clip_tokens), noise_scheduler,
sched_state, sampling_steps, guidance, sharding, weight_ema_beta)
p_train_step = jax.pmap(train_step, _AXIS, donate_argnums=(0, 1, 2, 3, 4))
if overwrite:
device_ids = None
else:
log("Retrieving device ids")
device_ids = jax.pmap(lambda x: device_id(), _AXIS, donate_argnums=(0,))(jnp.arange(jax.local_device_count()))
device_ids = to_host(device_ids, lambda x: x)
log("Got device ids")
def _get_weight(*w):
return jnp.stack([w[d % _MODEL_PARALLEL_DEVICES] for d in device_ids])
unet_params = jax.tree_util.tree_map(_get_weight, *weights)
def get_state(p):
if "input_embedding" not in p:
p["input_embedding"] = np.zeros((65536, 4), dtype=np.float32)
return TrainState.create(apply_fn=unet.__call__, params=p, tx=optimizer)
if USE_FSDP:
if overwrite:
unet_params = replicate(unet_params)
unet_state = jax.pmap(lambda x: get_state(sharding.shard(x)), _AXIS)(unet_params)
elif not overwrite:
unet_state = [get_state(index(unet_params, i)) for i in range(jax.local_device_count())]
unet_state = jax.device_put_sharded(unet_state, jax.local_devices())
else:
unet_state = replicate(get_state(unet_params))
if USE_FSDP:
unshard = jax.pmap(sharding.unshard, _AXIS)
else:
unshard = None
global_step = 0
lsteps = jax.device_count()
sample_count = 0
if USE_FSDP:
p_ema = map_fn(jnp.zeros_like)(unet_state.params)
else:
p_ema = jnp.zeros((jax.local_device_count(),), dtype=jnp.int8)
logging_pipeline = Pipeline(log_loss, run=run, guidance=guidance, eval_path=eval_path, lsteps=lsteps)
uploaded_ids = None
rng_seed = jax.vmap(lambda x: jax.random.split(jax.random.PRNGKey(x))[1])(
jnp.array([random.Random(d.id).randint(0, 2 ** 32 - 1) for d in jax.local_devices()]))
for epoch in range(10 ** 9):
for i, batch in tqdm.tqdm(enumerate(data, 1)):
global_step += 1
subs = batch.pop("subs")
if global_step <= 2:
log(f"Step {global_step}")
do_sample = int(global_step % (sample_interval // lsteps) == 1)
sample_count += do_sample
step_id = global_step * lsteps
log(f"Before step {step_id}")
do_sample_jax = jnp.full((jax.local_device_count(),), do_sample, dtype=jnp.int32)
count_jax = jnp.full((jax.local_device_count(),), sample_count, dtype=jnp.int32)
unet_state, p_ema, scalars, samples, new_device_ids, rng_seed = \
p_train_step(unet_state, batch, p_ema, do_sample_jax, count_jax, rng_seed)
save_now = step_id % save_interval == 0
logging_pipeline.put(epoch, subs, i, do_sample, scalars, samples, flush=save_now)
log("After")
if device_ids is None:
device_ids = new_device_ids
if uploaded_ids is None:
uploaded_ids = set([int(x) for x in device_ids]).union(set(list(range(_MODEL_PARALLEL_DEVICES))))
if save_now:
if USE_FSDP:
params = unshard(p_ema) # has to be here so all devices participate
else:
params = unet_state.params
for uid in uploaded_ids:
p = to_host(params, lambda x: x[uid])
flattened, jax_structure = jax.tree_util.tree_flatten(p)
for _ in range(_UPLOAD_RETRIES):
try:
with smart_open.open(f"{base_path}unet{uid}.np", "wb") as f:
np.savez(f, **{str(i): v for i, v in enumerate(flattened)})
except:
log("failed to write unet checkpoint")
traceback.print_exc()
else:
break
if __name__ == "__main__":
app()