66from skimage import io
77
88# Set working directory
9- wd = "/home/usr/Desktop /"
9+ wd = ". /"
1010
1111# To download the existing embeddings run aws s3 sync
1212# aws s3 sync s3://clay-worldcover-embeddings /my/dir/clay-worldcover-embeddings
1313
14- vector_dir = Path (wd + "clay-worldcover-embeddings/v002/2021 /" )
14+ vector_dir = Path (wd + "clay-worldcover-embeddings/2020 /" )
1515
1616# Create new DB structure or open existing
1717db = lancedb .connect (wd + "worldcoverembeddings_db" )
2424
2525 for _ , row in tile_df .iterrows ():
2626 data .append (
27- {"vector" : row ["embeddings" ], "year" : 2021 , "bbox" : row .geometry .bounds }
27+ {"vector" : row ["embeddings" ], "year" : 2020 , "bbox" : row .geometry .bounds }
2828 )
2929
3030# Show table names
3131db .table_names ()
3232
3333# Drop existing table if exists
34- db .drop_table ("worldcover-2021 -v001" )
34+ # db.drop_table("worldcover-2020 -v001")
3535
3636# Create embeddings table and insert the vector data
37- tbl = db .create_table ("worldcover-2021 -v001" , data = data , mode = "overwrite" )
37+ tbl = db .create_table ("worldcover-2020 -v001" , data = data , mode = "overwrite" )
3838
3939
4040# Visualize some image chips
@@ -53,6 +53,6 @@ def plot(df, cols=10):
5353
5454
5555# Select a vector by index, and search 10 similar pairs, and plot
56- v = tbl .to_pandas ()["vector" ].values [10540 ]
56+ v = tbl .to_pandas ()["vector" ].values [5 ]
5757result = tbl .search (query = v ).limit (5 ).to_pandas ()
58- plot (result , 5 )
58+ plot (result , 5 )
0 commit comments