|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "1a1c2a62-0daa-490c-8c27-d38b5082fa06", |
| 6 | + "metadata": { |
| 7 | + "tags": [] |
| 8 | + }, |
| 9 | + "source": [ |
| 10 | + "##### Short bias correction method validation exercise. where we check that we properly bias corrected the CMIP6 model output. #####\n", |
| 11 | + "\n", |
| 12 | + "##### Check (1) For each cell in a small selection we calculate a range of quantiles (across the temporal distribution of a given cell) of tasmax within the whole historical period and we compare that to the reference ERA-5 data. ######\n", |
| 13 | + "\n", |
| 14 | + "##### Check (2) Similarly, we calculate quantiles for the non-bias-corrected and bias-corrected future model output, compute the absolute change relative to historical and verify the changes are preserved after correction. ######" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "markdown", |
| 19 | + "id": "4b99f421-d6e0-423a-ab9f-5cc633247189", |
| 20 | + "metadata": { |
| 21 | + "jp-MarkdownHeadingCollapsed": true, |
| 22 | + "tags": [] |
| 23 | + }, |
| 24 | + "source": [ |
| 25 | + "#### Set up " |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "code", |
| 30 | + "execution_count": 1, |
| 31 | + "id": "d4be1bb5-2c55-40ae-9c9c-803efaf697f1", |
| 32 | + "metadata": {}, |
| 33 | + "outputs": [], |
| 34 | + "source": [ |
| 35 | + "%%capture\n", |
| 36 | + "! pip install xclim\n", |
| 37 | + "import numpy as np\n", |
| 38 | + "from urbanspoon import core\n", |
| 39 | + "import json\n", |
| 40 | + "import gcsfs\n", |
| 41 | + "import xarray as xr" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "code", |
| 46 | + "execution_count": 4, |
| 47 | + "id": "db87076f-dd75-49ef-8f19-2af23b5dadcf", |
| 48 | + "metadata": {}, |
| 49 | + "outputs": [], |
| 50 | + "source": [ |
| 51 | + "gcm = 'GFDL-ESM4'\n", |
| 52 | + "data_paths_file = '/home/jovyan/output/tasmax_gcms_data_paths.json'\n", |
| 53 | + "with open(data_paths_file) as json_file:\n", |
| 54 | + " data_dict = json.load(json_file)[gcm]" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": 5, |
| 60 | + "id": "a0e3d0f5-a8c4-4a87-81a4-1d4ef0e8818a", |
| 61 | + "metadata": {}, |
| 62 | + "outputs": [], |
| 63 | + "source": [ |
| 64 | + "def read_gcs_zarr(zarr_url, token='/opt/gcsfuse_tokens/impactlab-data.json', check=False, consolidated=True):\n", |
| 65 | + " \"\"\"\n", |
| 66 | + " takes in a GCSFS zarr url, bucket token, and returns a dataset \n", |
| 67 | + " Note that you will need to have the proper bucket authentication. \n", |
| 68 | + " \"\"\"\n", |
| 69 | + " fs = gcsfs.GCSFileSystem(token=token)\n", |
| 70 | + " store_path = fs.get_mapper(zarr_url, check=check) \n", |
| 71 | + " ds = xr.open_zarr(store_path, consolidated=consolidated) \n", |
| 72 | + " ds.close() \n", |
| 73 | + " return ds " |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "markdown", |
| 78 | + "id": "aeaacdc6-b6c8-49cb-92b4-33cf951c7540", |
| 79 | + "metadata": { |
| 80 | + "jp-MarkdownHeadingCollapsed": true, |
| 81 | + "tags": [] |
| 82 | + }, |
| 83 | + "source": [ |
| 84 | + "#### Select a few grid cells and quantiles to look at ###" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "code", |
| 89 | + "execution_count": 6, |
| 90 | + "id": "a44600a0-4870-4a79-b93e-07231040d278", |
| 91 | + "metadata": {}, |
| 92 | + "outputs": [], |
| 93 | + "source": [ |
| 94 | + "# Andorra, Ohio, N Brazil\n", |
| 95 | + "cells = [(41.5, 1.5),(39.5, -83.5),(-5.5, -49.5)]\n", |
| 96 | + "myquants = [0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99]\n", |
| 97 | + "quants_results = {}" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "markdown", |
| 102 | + "id": "e8d58846-7dc5-4183-9789-eabe1a56c366", |
| 103 | + "metadata": { |
| 104 | + "jp-MarkdownHeadingCollapsed": true, |
| 105 | + "tags": [] |
| 106 | + }, |
| 107 | + "source": [ |
| 108 | + "#### Compute quantiles for each dataset ###" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "code", |
| 113 | + "execution_count": 11, |
| 114 | + "id": "ccd7cce4-8a39-474b-83e4-ff241c1a6e36", |
| 115 | + "metadata": { |
| 116 | + "tags": [] |
| 117 | + }, |
| 118 | + "outputs": [], |
| 119 | + "source": [ |
| 120 | + "data_files = [\n", |
| 121 | + " data_dict['coarse']['cmip6']['historical'],\n", |
| 122 | + " data_dict['coarse']['cmip6']['ssp370'],\n", |
| 123 | + " data_dict['coarse']['bias_corrected']['historical'],\n", |
| 124 | + " data_dict['coarse']['bias_corrected']['ssp370'],\n", |
| 125 | + " data_dict['coarse']['ERA-5']\n", |
| 126 | + "]\n", |
| 127 | + "for data_file in data_files:\n", |
| 128 | + " da = read_gcs_zarr(data_file)['tasmax'].chunk(dict(time=-1))\n", |
| 129 | + " if data_file == data_files[1] or data_file == data_files[3]:\n", |
| 130 | + " da = da.sel(time=slice('2080', '2100'))\n", |
| 131 | + " result = core.xr_quantiles_across_time_by_cell(da=da, q=myquants, cells=cells)\n", |
| 132 | + " for r,k in result.items():\n", |
| 133 | + " result[r] = k.compute()\n", |
| 134 | + " quants_results[data_file] = result" |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "markdown", |
| 139 | + "id": "a0385778-08c7-4127-9316-8eaeaf1212e7", |
| 140 | + "metadata": { |
| 141 | + "jp-MarkdownHeadingCollapsed": true, |
| 142 | + "tags": [] |
| 143 | + }, |
| 144 | + "source": [ |
| 145 | + "### Bias correction method check (1) ###" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "markdown", |
| 150 | + "id": "cb69b7c6-6dba-4807-8f8d-0115e7c1eeb7", |
| 151 | + "metadata": { |
| 152 | + "tags": [] |
| 153 | + }, |
| 154 | + "source": [ |
| 155 | + "##### Verify bias-corrected historical CMIP6 is consistent with ERA-5, while non-bias-corrected isn't. Correction should reduce the bias (so quantiles diffs should be closer to zero)" |
| 156 | + ] |
| 157 | + }, |
| 158 | + { |
| 159 | + "cell_type": "code", |
| 160 | + "execution_count": 67, |
| 161 | + "id": "11080d9c-539a-4a08-bf7a-d7dd0ec9dbac", |
| 162 | + "metadata": {}, |
| 163 | + "outputs": [ |
| 164 | + { |
| 165 | + "name": "stdout", |
| 166 | + "output_type": "stream", |
| 167 | + "text": [ |
| 168 | + "cell : (41.5, 1.5)\n", |
| 169 | + "non corrected\n", |
| 170 | + "[2.56773102 2.15558777 1.97580566 2.34085083 3.32855225 3.06008911\n", |
| 171 | + " 2.49491577 2.06820374 1.76759369]\n", |
| 172 | + "corrected\n", |
| 173 | + "[1.12341064 0.98111115 0.84924927 0.58791351 0.47463989 0.6499939\n", |
| 174 | + " 0.42756042 0.24011841 0.12395844]\n", |
| 175 | + "cell : (39.5, -83.5)\n", |
| 176 | + "non corrected\n", |
| 177 | + "[0.24749176 0.93431091 2.05977478 4.80963898 4.96957397 3.92437744\n", |
| 178 | + " 3.11152039 2.97287292 3.2295816 ]\n", |
| 179 | + "corrected\n", |
| 180 | + "[-0.3089743 -0.37416229 -0.40345154 0.03394318 0.18711853 0.39482117\n", |
| 181 | + " 0.30922241 0.26907196 0.19752075]\n", |
| 182 | + "cell : (-5.5, -49.5)\n", |
| 183 | + "non corrected\n", |
| 184 | + "[ 2.81440765 2.70875092 2.26695557 2.23838806 2.25622559 -0.85774231\n", |
| 185 | + " -2.69372253 -3.00125885 -3.31266205]\n", |
| 186 | + "corrected\n", |
| 187 | + "[0.79361389 0.74092407 0.57475586 0.46287537 0.47612 0.40182495\n", |
| 188 | + " 0.38529968 0.40956726 0.41493103]\n" |
| 189 | + ] |
| 190 | + } |
| 191 | + ], |
| 192 | + "source": [ |
| 193 | + "for c in cells:\n", |
| 194 | + " print(f'cell : {c}')\n", |
| 195 | + " print('non corrected')\n", |
| 196 | + " print(quants_results[data_dict['coarse']['ERA-5']][c].values-quants_results[data_dict['coarse']['cmip6']['historical']][c].values)\n", |
| 197 | + " print('corrected')\n", |
| 198 | + " print(quants_results[data_dict['coarse']['ERA-5']][c].values-quants_results[data_dict['coarse']['bias_corrected']['historical']][c].values)" |
| 199 | + ] |
| 200 | + }, |
| 201 | + { |
| 202 | + "cell_type": "markdown", |
| 203 | + "id": "a1692629-b8b3-4bba-9b49-4697b968a643", |
| 204 | + "metadata": { |
| 205 | + "tags": [] |
| 206 | + }, |
| 207 | + "source": [ |
| 208 | + "### Bias correction method check (2) ###" |
| 209 | + ] |
| 210 | + }, |
| 211 | + { |
| 212 | + "cell_type": "markdown", |
| 213 | + "id": "73d77fb5-e9f1-402b-9666-77cac00b3d0e", |
| 214 | + "metadata": { |
| 215 | + "jp-MarkdownHeadingCollapsed": true, |
| 216 | + "tags": [] |
| 217 | + }, |
| 218 | + "source": [ |
| 219 | + "##### Verify CMIP6 absolute changes in quantiles across time are preserved after QDM bias correction." |
| 220 | + ] |
| 221 | + }, |
| 222 | + { |
| 223 | + "cell_type": "code", |
| 224 | + "execution_count": 14, |
| 225 | + "id": "7b8e3b54-1cf2-45d5-b030-75eefcee81f6", |
| 226 | + "metadata": {}, |
| 227 | + "outputs": [ |
| 228 | + { |
| 229 | + "name": "stdout", |
| 230 | + "output_type": "stream", |
| 231 | + "text": [ |
| 232 | + "cell : (41.5, 1.5)\n", |
| 233 | + "non corrected\n", |
| 234 | + "[3.68578522 3.20266876 3.14243774 3.14105988 3.70657349 4.42950439\n", |
| 235 | + " 4.95620422 4.98266907 4.68912598]\n", |
| 236 | + "corrected\n", |
| 237 | + "[3.87143188 3.08726807 3.14093018 3.51397705 3.96615601 4.8757019\n", |
| 238 | + " 5.29766846 5.19889526 4.94866333]\n", |
| 239 | + "cell : (39.5, -83.5)\n", |
| 240 | + "non corrected\n", |
| 241 | + "[4.91748657 2.47857208 2.54364014 3.39523315 3.83833313 4.31138611\n", |
| 242 | + " 4.07737732 3.99814301 3.65487091]\n", |
| 243 | + "corrected\n", |
| 244 | + "[5.15460327 2.65206299 2.66172485 3.64028931 4.08895874 4.36862183\n", |
| 245 | + " 4.30161133 4.03612671 3.95448853]\n", |
| 246 | + "cell : (-5.5, -49.5)\n", |
| 247 | + "non corrected\n", |
| 248 | + "[2.24838043 2.55540619 2.65269165 3.25076294 3.73539734 4.23408508\n", |
| 249 | + " 3.90587769 3.66032257 3.33886932]\n", |
| 250 | + "corrected\n", |
| 251 | + "[2.55775635 2.8618042 3.00776978 3.49560547 4.03863525 4.00012207\n", |
| 252 | + " 3.64265137 3.59101563 3.56733765]\n" |
| 253 | + ] |
| 254 | + } |
| 255 | + ], |
| 256 | + "source": [ |
| 257 | + "for c in cells:\n", |
| 258 | + " print(f'cell : {c}')\n", |
| 259 | + " print('non corrected')\n", |
| 260 | + " print(quants_results[data_dict['coarse']['cmip6']['ssp370']][c].values-quants_results[data_dict['coarse']['cmip6']['historical']][c].values)\n", |
| 261 | + " print('corrected')\n", |
| 262 | + " print(quants_results[data_dict['coarse']['bias_corrected']['ssp370']][c].values-quants_results[data_dict['coarse']['bias_corrected']['historical']][c].values)" |
| 263 | + ] |
| 264 | + }, |
| 265 | + { |
| 266 | + "cell_type": "code", |
| 267 | + "execution_count": null, |
| 268 | + "id": "23668f48-76d6-4180-9eec-a850cd6cce4c", |
| 269 | + "metadata": {}, |
| 270 | + "outputs": [], |
| 271 | + "source": [] |
| 272 | + } |
| 273 | + ], |
| 274 | + "metadata": { |
| 275 | + "kernelspec": { |
| 276 | + "display_name": "Python 3", |
| 277 | + "language": "python", |
| 278 | + "name": "python3" |
| 279 | + }, |
| 280 | + "language_info": { |
| 281 | + "codemirror_mode": { |
| 282 | + "name": "ipython", |
| 283 | + "version": 3 |
| 284 | + }, |
| 285 | + "file_extension": ".py", |
| 286 | + "mimetype": "text/x-python", |
| 287 | + "name": "python", |
| 288 | + "nbconvert_exporter": "python", |
| 289 | + "pygments_lexer": "ipython3", |
| 290 | + "version": "3.8.12" |
| 291 | + }, |
| 292 | + "widgets": { |
| 293 | + "application/vnd.jupyter.widget-state+json": { |
| 294 | + "state": {}, |
| 295 | + "version_major": 2, |
| 296 | + "version_minor": 0 |
| 297 | + } |
| 298 | + } |
| 299 | + }, |
| 300 | + "nbformat": 4, |
| 301 | + "nbformat_minor": 5 |
| 302 | +} |
0 commit comments