|
2 | 2 | "cells": [ |
3 | 3 | { |
4 | 4 | "cell_type": "markdown", |
5 | | - "metadata": {}, |
| 5 | + "metadata": { |
| 6 | + "user_expressions": [] |
| 7 | + }, |
6 | 8 | "source": [ |
7 | 9 | "# Collect angular distribution symbols\n", |
8 | 10 | "\n", |
|
12 | 14 | }, |
13 | 15 | { |
14 | 16 | "cell_type": "code", |
15 | | - "execution_count": null, |
| 17 | + "execution_count": 1, |
16 | 18 | "metadata": { |
17 | 19 | "jupyter": { |
18 | 20 | "source_hidden": true |
|
51 | 53 | }, |
52 | 54 | { |
53 | 55 | "cell_type": "code", |
54 | | - "execution_count": null, |
| 56 | + "execution_count": 2, |
55 | 57 | "metadata": { |
56 | 58 | "jupyter": { |
57 | 59 | "source_hidden": true |
|
63 | 65 | "hide-input" |
64 | 66 | ] |
65 | 67 | }, |
66 | | - "outputs": [], |
| 68 | + "outputs": [ |
| 69 | + { |
| 70 | + "data": { |
| 71 | + "text/markdown": [ |
| 72 | + "| name | LaTeX | $J^P$ | mass (MeV) | width (MeV) |\n", |
| 73 | + "| --- | --- | --- | --- | --- |\n", |
| 74 | + "| Lambda(c)+ | $\\Lambda_{c}^{+}$ | $\\frac{1}{2}^+$ | 2,286 | 0 |\n", |
| 75 | + "| p | $p$ | $\\frac{1}{2}^+$ | 938 | 0 |\n", |
| 76 | + "| pi+ | $\\pi^{+}$ | $0^-$ | 139 | 0 |\n", |
| 77 | + "| K- | $K^{-}$ | $0^-$ | 493 | 0 |\n" |
| 78 | + ], |
| 79 | + "text/plain": [ |
| 80 | + "<IPython.core.display.Markdown object>" |
| 81 | + ] |
| 82 | + }, |
| 83 | + "execution_count": 2, |
| 84 | + "metadata": {}, |
| 85 | + "output_type": "execute_result" |
| 86 | + } |
| 87 | + ], |
67 | 88 | "source": [ |
68 | 89 | "PDG = qrules.load_pdg()\n", |
69 | 90 | "PARTICLE_DB = {\n", |
|
96 | 117 | }, |
97 | 118 | { |
98 | 119 | "cell_type": "code", |
99 | | - "execution_count": null, |
| 120 | + "execution_count": 3, |
100 | 121 | "metadata": { |
101 | 122 | "jupyter": { |
102 | 123 | "source_hidden": true |
|
108 | 129 | "hide-input" |
109 | 130 | ] |
110 | 131 | }, |
111 | | - "outputs": [], |
| 132 | + "outputs": [ |
| 133 | + { |
| 134 | + "data": { |
| 135 | + "text/markdown": [ |
| 136 | + "| name | LaTeX | $J^P$ | mass (MeV) | width (MeV) |\n", |
| 137 | + "| --- | --- | --- | --- | --- |\n", |
| 138 | + "| Lambda(1405) | $\\Lambda(1404)$ | $\\frac{1}{2}^-$ | 1,405 | 50 |\n", |
| 139 | + "| Lambda(1520) | $\\Lambda(1520)$ | $\\frac{3}{2}^-$ | 1,519 | 16 |\n", |
| 140 | + "| Lambda(1600) | $\\Lambda(1600)$ | $\\frac{1}{2}^+$ | 1,600 | 200 |\n", |
| 141 | + "| Lambda(1670) | $\\Lambda(1670)$ | $\\frac{1}{2}^-$ | 1,674 | 30 |\n", |
| 142 | + "| Lambda(1690) | $\\Lambda(1690)$ | $\\frac{3}{2}^-$ | 1,690 | 70 |\n", |
| 143 | + "| Lambda(2000) | $\\Lambda(2000)$ | $\\frac{1}{2}^-$ | 2,000 | 210 |\n", |
| 144 | + "| Delta(1232)+ | $\\Delta(1232)^{+}$ | $\\frac{3}{2}^+$ | 1,232 | 117 |\n", |
| 145 | + "| Delta(1600)+ | $\\Delta(1600)^{+}$ | $\\frac{3}{2}^+$ | 1,570 | 250 |\n", |
| 146 | + "| Delta(1700)+ | $\\Delta(1700)^{+}$ | $\\frac{3}{2}^-$ | 1,710 | 300 |\n", |
| 147 | + "| K(0)*(700)+ | $K_{0}^{*}(700)^{+}$ | $0^+$ | 845 | 468 |\n", |
| 148 | + "| K*(892)0 | $K^{*}(892)^{0}$ | $1^-$ | 895 | 47 |\n", |
| 149 | + "| K(2)*(1430)0 | $K_{2}^{*}(1430)^{0}$ | $2^+$ | 1,432 | 109 |\n" |
| 150 | + ], |
| 151 | + "text/plain": [ |
| 152 | + "<IPython.core.display.Markdown object>" |
| 153 | + ] |
| 154 | + }, |
| 155 | + "execution_count": 3, |
| 156 | + "metadata": {}, |
| 157 | + "output_type": "execute_result" |
| 158 | + } |
| 159 | + ], |
112 | 160 | "source": [ |
113 | 161 | "resonance_names = [\n", |
114 | 162 | " \"Lambda(1405)\",\n", |
|
130 | 178 | }, |
131 | 179 | { |
132 | 180 | "cell_type": "code", |
133 | | - "execution_count": null, |
| 181 | + "execution_count": 4, |
134 | 182 | "metadata": { |
135 | 183 | "jupyter": { |
136 | 184 | "source_hidden": true |
|
142 | 190 | "hide-input" |
143 | 191 | ] |
144 | 192 | }, |
145 | | - "outputs": [], |
| 193 | + "outputs": [ |
| 194 | + { |
| 195 | + "data": { |
| 196 | + "text/latex": [ |
| 197 | + "\\begin{array}{c}\n", |
| 198 | + " \\Lambda_{c}^{+}\\left[\\frac{1}{2}^+\\right] \\xrightarrow[S=1/2]{L=0} \\Lambda(1404)\\left[\\frac{1}{2}^-\\right] \\xrightarrow[S=1/2]{L=0} K^{-}\\left[0^-\\right] p\\left[\\frac{1}{2}^+\\right] \\pi^{+}\\left[0^-\\right] \\\\\n", |
| 199 | + " \\Lambda_{c}^{+}\\left[\\frac{1}{2}^+\\right] \\xrightarrow[S=3/2]{L=1} \\Lambda(1520)\\left[\\frac{3}{2}^-\\right] \\xrightarrow[S=1/2]{L=2} K^{-}\\left[0^-\\right] p\\left[\\frac{1}{2}^+\\right] \\pi^{+}\\left[0^-\\right] \\\\\n", |
| 200 | + " \\Lambda_{c}^{+}\\left[\\frac{1}{2}^+\\right] \\xrightarrow[S=1/2]{L=0} \\Lambda(1600)\\left[\\frac{1}{2}^+\\right] \\xrightarrow[S=1/2]{L=1} K^{-}\\left[0^-\\right] p\\left[\\frac{1}{2}^+\\right] \\pi^{+}\\left[0^-\\right] \\\\\n", |
| 201 | + " \\Lambda_{c}^{+}\\left[\\frac{1}{2}^+\\right] \\xrightarrow[S=1/2]{L=0} \\Lambda(1670)\\left[\\frac{1}{2}^-\\right] \\xrightarrow[S=1/2]{L=0} K^{-}\\left[0^-\\right] p\\left[\\frac{1}{2}^+\\right] \\pi^{+}\\left[0^-\\right] \\\\\n", |
| 202 | + " \\Lambda_{c}^{+}\\left[\\frac{1}{2}^+\\right] \\xrightarrow[S=3/2]{L=1} \\Lambda(1690)\\left[\\frac{3}{2}^-\\right] \\xrightarrow[S=1/2]{L=2} K^{-}\\left[0^-\\right] p\\left[\\frac{1}{2}^+\\right] \\pi^{+}\\left[0^-\\right] \\\\\n", |
| 203 | + " \\Lambda_{c}^{+}\\left[\\frac{1}{2}^+\\right] \\xrightarrow[S=1/2]{L=0} \\Lambda(2000)\\left[\\frac{1}{2}^-\\right] \\xrightarrow[S=1/2]{L=0} K^{-}\\left[0^-\\right] p\\left[\\frac{1}{2}^+\\right] \\pi^{+}\\left[0^-\\right] \\\\\n", |
| 204 | + " \\Lambda_{c}^{+}\\left[\\frac{1}{2}^+\\right] \\xrightarrow[S=3/2]{L=1} \\Delta(1232)^{+}\\left[\\frac{3}{2}^+\\right] \\xrightarrow[S=1/2]{L=1} p\\left[\\frac{1}{2}^+\\right] \\pi^{+}\\left[0^-\\right] K^{-}\\left[0^-\\right] \\\\\n", |
| 205 | + " \\Lambda_{c}^{+}\\left[\\frac{1}{2}^+\\right] \\xrightarrow[S=3/2]{L=1} \\Delta(1600)^{+}\\left[\\frac{3}{2}^+\\right] \\xrightarrow[S=1/2]{L=1} p\\left[\\frac{1}{2}^+\\right] \\pi^{+}\\left[0^-\\right] K^{-}\\left[0^-\\right] \\\\\n", |
| 206 | + " \\Lambda_{c}^{+}\\left[\\frac{1}{2}^+\\right] \\xrightarrow[S=3/2]{L=1} \\Delta(1700)^{+}\\left[\\frac{3}{2}^-\\right] \\xrightarrow[S=1/2]{L=2} p\\left[\\frac{1}{2}^+\\right] \\pi^{+}\\left[0^-\\right] K^{-}\\left[0^-\\right] \\\\\n", |
| 207 | + " \\Lambda_{c}^{+}\\left[\\frac{1}{2}^+\\right] \\xrightarrow[S=1/2]{L=0} K_{0}^{*}(700)^{+}\\left[0^+\\right] \\xrightarrow[S=0]{L=0} \\pi^{+}\\left[0^-\\right] K^{-}\\left[0^-\\right] p\\left[\\frac{1}{2}^+\\right] \\\\\n", |
| 208 | + " \\Lambda_{c}^{+}\\left[\\frac{1}{2}^+\\right] \\xrightarrow[S=1/2]{L=0} K^{*}(892)^{0}\\left[1^-\\right] \\xrightarrow[S=0]{L=1} \\pi^{+}\\left[0^-\\right] K^{-}\\left[0^-\\right] p\\left[\\frac{1}{2}^+\\right] \\\\\n", |
| 209 | + " \\Lambda_{c}^{+}\\left[\\frac{1}{2}^+\\right] \\xrightarrow[S=3/2]{L=1} K_{2}^{*}(1430)^{0}\\left[2^+\\right] \\xrightarrow[S=0]{L=2} \\pi^{+}\\left[0^-\\right] K^{-}\\left[0^-\\right] p\\left[\\frac{1}{2}^+\\right] \\\\\n", |
| 210 | + "\\end{array}" |
| 211 | + ], |
| 212 | + "text/plain": [ |
| 213 | + "<IPython.core.display.Latex object>" |
| 214 | + ] |
| 215 | + }, |
| 216 | + "execution_count": 4, |
| 217 | + "metadata": {}, |
| 218 | + "output_type": "execute_result" |
| 219 | + } |
| 220 | + ], |
146 | 221 | "source": [ |
147 | 222 | "def load_three_body_decay(\n", |
148 | 223 | " resonance_names: Iterable[str],\n", |
|
221 | 296 | }, |
222 | 297 | { |
223 | 298 | "cell_type": "code", |
224 | | - "execution_count": null, |
| 299 | + "execution_count": 5, |
225 | 300 | "metadata": { |
226 | 301 | "mystnb": { |
227 | 302 | "code_prompt_show": "Define dynamics builder that returns a symbol only" |
|
271 | 346 | }, |
272 | 347 | { |
273 | 348 | "cell_type": "code", |
274 | | - "execution_count": null, |
| 349 | + "execution_count": 6, |
275 | 350 | "metadata": { |
276 | 351 | "tags": [ |
277 | 352 | "full-width", |
278 | 353 | "hide-input" |
279 | 354 | ] |
280 | 355 | }, |
281 | | - "outputs": [], |
| 356 | + "outputs": [ |
| 357 | + { |
| 358 | + "data": { |
| 359 | + "text/latex": [ |
| 360 | + "$\\displaystyle \\sum_{\\lambda_{0}=-1/2}^{1/2} \\sum_{\\lambda_{1}=-1/2}^{1/2} \\sum_{\\lambda_{2}=0} \\sum_{\\lambda_{3}=0}{\\left|{\\sum_{\\lambda_0^{\\prime}=-1/2}^{1/2} \\sum_{\\lambda_1^{\\prime}=-1/2}^{1/2} \\sum_{\\lambda_2^{\\prime}=0} \\sum_{\\lambda_3^{\\prime}=0}{A^{1}_{\\lambda_0^{\\prime}, \\lambda_1^{\\prime}, \\lambda_2^{\\prime}, \\lambda_3^{\\prime}} d^{\\frac{1}{2}}_{\\lambda_1^{\\prime},\\lambda_{1}}\\left(\\zeta^1_{1(1)}\\right) d^{\\frac{1}{2}}_{\\lambda_{0},\\lambda_0^{\\prime}}\\left(\\zeta^0_{1(1)}\\right) + A^{2}_{\\lambda_0^{\\prime}, \\lambda_1^{\\prime}, \\lambda_2^{\\prime}, \\lambda_3^{\\prime}} d^{\\frac{1}{2}}_{\\lambda_1^{\\prime},\\lambda_{1}}\\left(\\zeta^1_{2(1)}\\right) d^{\\frac{1}{2}}_{\\lambda_{0},\\lambda_0^{\\prime}}\\left(\\zeta^0_{2(1)}\\right) + A^{3}_{\\lambda_0^{\\prime}, \\lambda_1^{\\prime}, \\lambda_2^{\\prime}, \\lambda_3^{\\prime}} d^{\\frac{1}{2}}_{\\lambda_1^{\\prime},\\lambda_{1}}\\left(\\zeta^1_{3(1)}\\right) d^{\\frac{1}{2}}_{\\lambda_{0},\\lambda_0^{\\prime}}\\left(\\zeta^0_{3(1)}\\right)}}\\right|^{2}}$" |
| 361 | + ], |
| 362 | + "text/plain": [ |
| 363 | + "PoolSum(Abs(PoolSum(A^1[\\lambda_0^{\\prime}, \\lambda_1^{\\prime}, \\lambda_2^{\\prime}, \\lambda_3^{\\prime}]*WignerD(1/2, \\lambda_1^{\\prime}, lambda1, 0, \\zeta^1_{1(1)}, 0)*WignerD(1/2, lambda0, \\lambda_0^{\\prime}, 0, \\zeta^0_{1(1)}, 0) + A^2[\\lambda_0^{\\prime}, \\lambda_1^{\\prime}, \\lambda_2^{\\prime}, \\lambda_3^{\\prime}]*WignerD(1/2, \\lambda_1^{\\prime}, lambda1, 0, \\zeta^1_{2(1)}, 0)*WignerD(1/2, lambda0, \\lambda_0^{\\prime}, 0, \\zeta^0_{2(1)}, 0) + A^3[\\lambda_0^{\\prime}, \\lambda_1^{\\prime}, \\lambda_2^{\\prime}, \\lambda_3^{\\prime}]*WignerD(1/2, \\lambda_1^{\\prime}, lambda1, 0, \\zeta^1_{3(1)}, 0)*WignerD(1/2, lambda0, \\lambda_0^{\\prime}, 0, \\zeta^0_{3(1)}, 0), (\\lambda_0^{\\prime}, (-1/2, 1/2)), (\\lambda_1^{\\prime}, (-1/2, 1/2)), (\\lambda_2^{\\prime}, (0,)), (\\lambda_3^{\\prime}, (0,))))**2, (lambda0, (-1/2, 1/2)), (lambda1, (-1/2, 1/2)), (lambda2, (0,)), (lambda3, (0,)))" |
| 364 | + ] |
| 365 | + }, |
| 366 | + "execution_count": 6, |
| 367 | + "metadata": {}, |
| 368 | + "output_type": "execute_result" |
| 369 | + } |
| 370 | + ], |
282 | 371 | "source": [ |
283 | 372 | "model_builder = DalitzPlotDecompositionBuilder(DECAY, min_ls=(False, True))\n", |
284 | 373 | "for chain in model_builder.decay.chains:\n", |
|
289 | 378 | }, |
290 | 379 | { |
291 | 380 | "cell_type": "code", |
292 | | - "execution_count": null, |
| 381 | + "execution_count": 7, |
293 | 382 | "metadata": { |
294 | 383 | "mystnb": { |
295 | 384 | "code_prompt_show": "Set all couplings to one" |
|
298 | 387 | "hide-input" |
299 | 388 | ] |
300 | 389 | }, |
301 | | - "outputs": [], |
| 390 | + "outputs": [ |
| 391 | + { |
| 392 | + "name": "stderr", |
| 393 | + "output_type": "stream", |
| 394 | + "text": [ |
| 395 | + "Cached expression file /Users/meistergollumlordprotector/.sympy-cache/pythonhashseed-0-5576909796351536528.pkl not found, performing doit()...\n", |
| 396 | + "Cached expression file /Users/meistergollumlordprotector/.sympy-cache/pythonhashseed-0-5147167766190701663.pkl not found, performing doit()...\n", |
| 397 | + "Cached expression file /Users/meistergollumlordprotector/.sympy-cache/pythonhashseed-0+3794963735732275668.pkl not found, performing doit()...\n", |
| 398 | + "Cached expression file /Users/meistergollumlordprotector/.sympy-cache/pythonhashseed-0+1891526491921064931.pkl not found, performing doit()...\n", |
| 399 | + "Cached expression file /Users/meistergollumlordprotector/.sympy-cache/pythonhashseed-0-4786397281461125801.pkl not found, performing doit()...\n", |
| 400 | + "Cached expression file /Users/meistergollumlordprotector/.sympy-cache/pythonhashseed-0-4483384253665846016.pkl not found, performing doit()...\n", |
| 401 | + "Cached expression file /Users/meistergollumlordprotector/.sympy-cache/pythonhashseed-0-6135427758016384197.pkl not found, performing doit()...\n", |
| 402 | + "Cached expression file /Users/meistergollumlordprotector/.sympy-cache/pythonhashseed-0-2033597028278369610.pkl not found, performing doit()...\n", |
| 403 | + "Cached expression file /Users/meistergollumlordprotector/.sympy-cache/pythonhashseed-0-5279309075788847128.pkl not found, performing doit()...\n", |
| 404 | + "Cached expression file /Users/meistergollumlordprotector/.sympy-cache/pythonhashseed-0-1155169879847640849.pkl not found, performing doit()...\n", |
| 405 | + "Cached expression file /Users/meistergollumlordprotector/.sympy-cache/pythonhashseed-0-4564301318613152657.pkl not found, performing doit()...\n", |
| 406 | + "Cached expression file /Users/meistergollumlordprotector/.sympy-cache/pythonhashseed-0+2282801685165076840.pkl not found, performing doit()...\n", |
| 407 | + "Cached expression file /Users/meistergollumlordprotector/.sympy-cache/pythonhashseed-0+5864924897008292644.pkl not found, performing doit()...\n" |
| 408 | + ] |
| 409 | + } |
| 410 | + ], |
302 | 411 | "source": [ |
303 | 412 | "couplings_to_one = {s: 1 for s in model.parameter_defaults if \"mathcal\" in str(s)}\n", |
304 | 413 | "\n", |
|
313 | 422 | }, |
314 | 423 | { |
315 | 424 | "cell_type": "code", |
316 | | - "execution_count": null, |
| 425 | + "execution_count": 8, |
317 | 426 | "metadata": { |
318 | 427 | "mystnb": { |
319 | 428 | "code_prompt_show": "Collect Wigner-D functions" |
|
323 | 432 | "full-width" |
324 | 433 | ] |
325 | 434 | }, |
326 | | - "outputs": [], |
| 435 | + "outputs": [ |
| 436 | + { |
| 437 | + "data": { |
| 438 | + "text/latex": [ |
| 439 | + "\n", |
| 440 | + "\\begin{eqnarray}\n", |
| 441 | + "X_{0}^{0,1/2;0,0}\\left(\\sigma_{1}\\right) &:& 1 \\\\\n", |
| 442 | + "X_{1}^{0,1/2;1,0}\\left(\\sigma_{1}\\right) &:& \\frac{1}{3} \\\\\n", |
| 443 | + "X_{2}^{1,3/2;2,0}\\left(\\sigma_{1}\\right) &:& \\frac{2}{5} - \\frac{3 \\sin^{2}{\\left(\\theta_{23} \\right)}}{10} \\\\\n", |
| 444 | + "X_{1/2}^{0,1/2;0,1/2}\\left(\\sigma_{2}\\right) &:& 9 \\\\\n", |
| 445 | + "X_{1/2}^{0,1/2;1,1/2}\\left(\\sigma_{2}\\right) &:& 1 \\\\\n", |
| 446 | + "X_{3/2}^{1,3/2;2,1/2}\\left(\\sigma_{2}\\right) &:& 4 - 3 \\sin^{2}{\\left(\\theta_{31} \\right)} \\\\\n", |
| 447 | + "X_{3/2}^{1,3/2;1,1/2}\\left(\\sigma_{3}\\right) &:& 4 - 3 \\sin^{2}{\\left(\\theta_{12} \\right)} \\\\\n", |
| 448 | + "X_{3/2}^{1,3/2;2,1/2}\\left(\\sigma_{3}\\right) &:& 1 - \\frac{3 \\sin^{2}{\\left(\\theta_{12} \\right)}}{4} \\\\\n", |
| 449 | + "\\end{eqnarray}" |
| 450 | + ], |
| 451 | + "text/plain": [ |
| 452 | + "<IPython.core.display.Latex object>" |
| 453 | + ] |
| 454 | + }, |
| 455 | + "execution_count": 8, |
| 456 | + "metadata": {}, |
| 457 | + "output_type": "execute_result" |
| 458 | + } |
| 459 | + ], |
327 | 460 | "source": [ |
328 | 461 | "src = R\"\"\"\n", |
329 | 462 | "\\begin{eqnarray}\n", |
|
353 | 486 | "name": "python", |
354 | 487 | "nbconvert_exporter": "python", |
355 | 488 | "pygments_lexer": "ipython3", |
356 | | - "version": "3.8.15" |
| 489 | + "version": "3.8.16" |
357 | 490 | } |
358 | 491 | }, |
359 | 492 | "nbformat": 4, |
|
0 commit comments