-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathspacevoxelviewer.py
440 lines (363 loc) · 16.7 KB
/
spacevoxelviewer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import numpy as np
import matplotlib.pyplot as plt
from astropy.io import fits # For reading FITS files
from astropy.time import Time # For handling observation times
from astropy.coordinates import get_body_barycentric, SkyCoord, solar_system_ephemeris
import astropy.units as u
import os
# Import the compiled C++ module
import process_image_cpp
# -------------------------------------------------------------------------------------
# Configurable Parameters
# -------------------------------------------------------------------------------------
# The voxel grid is a 3D array where we accumulate brightness values from rays cast
# through space. Adjust voxel_grid_size and grid_extent for your scenario.
voxel_grid_size = (400, 400, 400) # Number of voxels in (x, y, z) directions
grid_extent = 3e12 # Half the length of one side of the voxel cube (in meters)
# The position and orientation of the voxel grid is determined based on RA/Dec.
# We choose a RA/Dec and assume the voxel grid is centered along that line-of-sight
# at distance_from_sun.
distance_from_sun = 1.496e+11 * 41.714231 # Approximately 1 AU in meters
center_ra = 280.50 # Center RA in degrees
center_dec = -20. # Center Dec in degrees
# distance_from_sun = 1.496e+11 * 34 # Approximately 1 AU in meters
# center_ra = 287.967022 # Center RA in degrees
# center_dec = -20.713745 # Center Dec in degrees
# Threshold used to identify "significant" voxels (e.g., top 90% brightness).
brightness_threshold_percentile = .1
# Ray casting parameters: how far and how finely we cast rays into space.
max_distance = distance_from_sun * 100# Maximum distance (in meters) for ray casting
num_steps = 20000 # Number of steps along each ray
# Visualization parameters for plots.
marker_size = 5 # Marker size for scatter plots
alpha = 0.5 # Transparency for scatter points
# Default field-of-view (FOV) if not found in FITS header (in arcminutes).
default_fov_arcminutes = 2.7
# Directory containing FITS files
fits_directory = 'fits'
# Define the sky patch parameters for building a celestial sphere texture:
# We'll project the image directions onto this sky patch.
angular_width = 5.0 # Angular width of sky patch in degrees
angular_height = 5.0 # Angular height of sky patch in degrees
texture_width = 1024 # Texture width (pixels)
texture_height = 1024 # Texture height (pixels)
# -------------------------------------------------------------------------------------
# Helper Functions
# -------------------------------------------------------------------------------------
def get_earth_position_icrs(obs_time):
"""
Compute Earth's heliocentric position in ICRS coordinates for a given observation time.
Parameters:
- obs_time: Astropy Time object for the observation time.
Returns:
- earth_pos: Numpy array [x, y, z] in meters representing Earth's position in ICRS frame.
"""
with solar_system_ephemeris.set('builtin'):
earth_barycentric = get_body_barycentric('earth', obs_time)
earth_icrs = earth_barycentric
earth_pos = earth_icrs.get_xyz().to(u.meter).value
earth_pos = np.array(earth_pos).flatten()
return earth_pos
def get_telescope_pointing(header):
"""
Get the telescope's pointing direction from FITS header RA_TARG and DEC_TARG.
Parameters:
- header: FITS header containing RA_TARG and DEC_TARG.
Returns:
- direction: Unit vector [x, y, z] in ICRS frame.
"""
ra = header.get('RA_TARG')
dec = header.get('DEC_TARG')
if ra is None or dec is None:
raise ValueError("RA_TARG and DEC_TARG not found in FITS header.")
coord = SkyCoord(ra=ra*u.degree, dec=dec*u.degree, frame='icrs')
cartesian = coord.represent_as('cartesian')
direction = np.array([cartesian.x.value, cartesian.y.value, cartesian.z.value])
direction /= np.linalg.norm(direction)
return direction
def get_observation_time(fits_file):
"""
Extract the observation time (DATE-OBS, TIME-OBS) from a FITS file and return as an Astropy Time object.
Parameters:
- fits_file: Path to the FITS file.
Returns:
- obs_time: Astropy Time object representing observation time.
"""
with fits.open(fits_file) as hdulist:
header = hdulist[0].header
date_obs = header.get('DATE-OBS')
time_obs = header.get('TIME-OBS')
if date_obs is None or time_obs is None:
raise ValueError(f"DATE-OBS and TIME-OBS not found in FITS header of {fits_file}.")
obs_time_str = f"{date_obs}T{time_obs}"
obs_time = Time(obs_time_str, format='isot', scale='utc')
return obs_time
def process_image(fits_file, voxel_grid, voxel_grid_extent, celestial_sphere_texture):
"""
Process a single FITS image:
- Compute Earth's position and telescope pointing.
- Read and normalize image data.
- Call the C++ function to cast rays, update voxel grid and celestial sphere texture.
Parameters:
- fits_file: Path to the FITS file.
- voxel_grid: 3D numpy array for voxel accumulation.
- voxel_grid_extent: Spatial extents of voxel grid.
- celestial_sphere_texture: 2D numpy array for celestial sphere.
Returns:
- earth_position: Earth's position at obs time.
- pointing_direction: Telescope pointing direction.
- obs_time: Astropy Time object for observation time.
"""
with fits.open(fits_file) as hdulist:
print(f"Processing FITS file: {fits_file}")
hdulist.info()
header = hdulist[0].header
date_obs = header.get('DATE-OBS')
time_obs = header.get('TIME-OBS')
if date_obs is None or time_obs is None:
raise ValueError("DATE-OBS and TIME-OBS not found in FITS header.")
obs_time_str = f"{date_obs}T{time_obs}"
obs_time = Time(obs_time_str, format='isot', scale='utc')
# Compute Earth position and telescope pointing
earth_position = get_earth_position_icrs(obs_time)
pointing_direction = get_telescope_pointing(header)
# Find image data
image_data = None
if hdulist[0].data is not None:
image_data = hdulist[0].data
print("Found image data in Primary HDU.")
elif 'SCI' in hdulist:
image_data = hdulist['SCI'].data
print("Found image data in 'SCI' extension.")
else:
for hdu in hdulist:
if isinstance(hdu, (fits.ImageHDU, fits.CompImageHDU)):
if hdu.data is not None:
image_data = hdu.data
print(f"Found image data in extension '{hdu.name}'.")
break
if image_data is None:
raise ValueError("No image data found in the FITS file.")
if image_data.ndim != 2:
raise ValueError("Image data is not 2D.")
image_data = np.nan_to_num(image_data, nan=0.0, posinf=0.0, neginf=0.0)
image_min = np.min(image_data)
image_max = np.max(image_data)
if image_max - image_min == 0:
raise ValueError("Image data has zero dynamic range.")
image = (image_data - image_min) / (image_max - image_min)
# Optional visualization of the FITS image
# plt.figure(figsize=(8, 6))
# plt.imshow(image, cmap='gray', origin='lower')
# plt.title(f"FITS Image: {os.path.basename(fits_file)}")
# plt.xlabel('Pixel X')
# plt.ylabel('Pixel Y')
# plt.colorbar(label='Normalized Intensity')
# plt.show()
height, width = image.shape
# Determine field of view
fov = header.get('FOV')
if fov is None:
cd1_1 = header.get('CD1_1')
cd1_2 = header.get('CD1_2')
cd2_1 = header.get('CD2_1')
cd2_2 = header.get('CD2_2')
if cd1_1 is not None and cd1_2 is not None and cd2_1 is not None and cd2_2 is not None:
pixel_scale_x = np.sqrt(cd1_1**2 + cd2_1**2)
pixel_scale_y = np.sqrt(cd1_2**2 + cd2_2**2)
fov_x = pixel_scale_x * width
fov_y = pixel_scale_y * height
fov = max(fov_x, fov_y)
else:
fov = default_fov_arcminutes / 60 # degrees
else:
fov = float(fov)
fov_rad = np.deg2rad(fov)
# Convert Python data to lists for C++
earth_position_list = earth_position.tolist()
pointing_direction_list = pointing_direction.tolist()
voxel_grid_extent_list = [
(voxel_grid_extent[0][0], voxel_grid_extent[0][1]),
(voxel_grid_extent[1][0], voxel_grid_extent[1][1]),
(voxel_grid_extent[2][0], voxel_grid_extent[2][1])
]
# Define sky patch in radians
c_ra_rad = np.deg2rad(center_ra)
c_dec_rad = np.deg2rad(center_dec)
aw_rad = np.deg2rad(angular_width)
ah_rad = np.deg2rad(angular_height)
# Call C++ function to process the image
process_image_cpp.process_image_cpp(
image.astype(np.float64),
earth_position_list,
pointing_direction_list,
fov_rad,
width,
height,
voxel_grid,
voxel_grid_extent_list,
max_distance,
num_steps,
celestial_sphere_texture,
c_ra_rad,
c_dec_rad,
aw_rad,
ah_rad,
True, # update_celestial_sphere: True to accumulate celestial sphere brightness
False # perform_background_subtraction: False for now (no background subtraction)
)
return earth_position, pointing_direction, obs_time
def main():
"""
Main function:
1. Set up voxel grid and celestial sphere texture.
2. Find and process FITS files (one pass).
3. Analyze voxel grid, find brightest point, visualize results.
"""
# Compute voxel grid center from RA/Dec
center_coord = SkyCoord(ra=center_ra*u.degree, dec=center_dec*u.degree, frame='icrs')
direction_vector = center_coord.cartesian.xyz.value
voxel_grid_center = direction_vector * distance_from_sun
voxel_grid_extent = (
(voxel_grid_center[0] - grid_extent, voxel_grid_center[0] + grid_extent),
(voxel_grid_center[1] - grid_extent, voxel_grid_center[1] + grid_extent),
(voxel_grid_center[2] - grid_extent, voxel_grid_center[2] + grid_extent)
)
# Initialize voxel grid and celestial sphere texture
voxel_grid = np.zeros(voxel_grid_size, dtype=np.float64)
celestial_sphere_texture = np.zeros((texture_height, texture_width), dtype=np.float64)
# List FITS files
fits_files = [os.path.join(fits_directory, f) for f in os.listdir(fits_directory) if f.endswith('.fits')]
if not fits_files:
print(f"No FITS files found in directory '{fits_directory}'.")
return
# Sort FITS files by observation time
fits_files_with_times = []
for fits_file in fits_files:
try:
obs_time = get_observation_time(fits_file)
fits_files_with_times.append((fits_file, obs_time))
print(obs_time)
except ValueError as e:
print(e)
fits_files_sorted = sorted(fits_files_with_times, key=lambda x: x[1])
fits_files_sorted = [(f[0], f[1]) for f in fits_files_sorted]
earth_positions = []
pointing_directions = []
observation_times = []
# Process each FITS file once
for fits_file, obs_time in fits_files_sorted:
earth_pos, p_dir, obs_time = process_image(
fits_file,
voxel_grid,
voxel_grid_extent,
celestial_sphere_texture
)
earth_positions.append(earth_pos)
pointing_directions.append(p_dir)
observation_times.append(obs_time)
# Create a background model (optional step)
# In this example, we simply show the result after one pass.
background_model = celestial_sphere_texture / len(fits_files_sorted)
# Analyze the voxel grid
voxel_grid_avg = voxel_grid / len(fits_files_sorted)
# Threshold for significant voxels
if np.any(voxel_grid_avg > 0):
threshold = np.percentile(voxel_grid_avg[voxel_grid_avg > 0], brightness_threshold_percentile)
else:
threshold = 0
object_voxels = voxel_grid_avg > threshold
x_indices, y_indices, z_indices = np.nonzero(object_voxels)
nx, ny, nz = voxel_grid_avg.shape
x_min, x_max = voxel_grid_extent[0]
y_min, y_max = voxel_grid_extent[1]
z_min, z_max = voxel_grid_extent[2]
x_coords = x_indices / nx * (x_max - x_min) + x_min
y_coords = y_indices / ny * (y_max - y_min) + y_min
z_coords = z_indices / nz * (z_max - z_min) + z_min
intensities = voxel_grid_avg[object_voxels]
# Find brightest point
if intensities.size > 0:
brightest_idx = np.argmax(intensities)
brightest_x = x_coords[brightest_idx]
brightest_y = y_coords[brightest_idx]
brightest_z = z_coords[brightest_idx]
brightest_coord = SkyCoord(
x=brightest_x * u.meter,
y=brightest_y * u.meter,
z=brightest_z * u.meter,
representation_type='cartesian',
frame='icrs'
)
brightest_sph = brightest_coord.represent_as('spherical')
brightest_ra = brightest_sph.lon.degree
brightest_dec = brightest_sph.lat.degree
distance_to_origin = np.sqrt(brightest_x**2 + brightest_y**2 + brightest_z**2)
distance_to_origin_au = distance_to_origin / 1.496e+11
print(f"Brightest Point Coordinates:")
print(f"RA: {brightest_ra:.6f} degrees")
print(f"Dec: {brightest_dec:.6f} degrees")
print(f"Distance from Origin: {distance_to_origin_au:.6f} AU")
else:
print("No significant voxels found to identify brightest point.")
# 3D Visualization of the voxel grid
if len(x_coords) > 0:
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
sc = ax.scatter(x_coords, y_coords, z_coords, c=intensities, cmap='hot', marker='o', s=marker_size, alpha=alpha)
if intensities.size > 0:
ax.scatter([brightest_x], [brightest_y], [brightest_z], c='blue', marker='*', s=100, label='Brightest Point')
# Plot Earth positions
earth_x = [pos[0] for pos in earth_positions]
earth_y = [pos[1] for pos in earth_positions]
earth_z = [pos[2] for pos in earth_positions]
ax.scatter(earth_x, earth_y, earth_z, c='green', marker='o', s=200, label='Earth Positions')
# Plot Voxel Grid Center
ax.scatter([voxel_grid_center[0]], [voxel_grid_center[1]], [voxel_grid_center[2]],
c='purple', marker='x', s=100, label='Voxel Grid Center')
# Draw arrows representing camera pointing directions over time
times = np.array([t.mjd for t in observation_times])
if len(times) > 1 and times.max() != times.min():
times_norm = (times - times.min()) / (times.max() - times.min())
else:
times_norm = np.zeros_like(times)
cmap = plt.cm.get_cmap('viridis')
# Draw arrows from Earth positions in the direction of the camera pointing
arrow_length = grid_extent * 0.5
for idx, (pos, dir_vec, time_norm) in enumerate(zip(earth_positions, pointing_directions, times_norm)):
x0, y0, z0 = pos
dx = dir_vec[0] * arrow_length
dy = dir_vec[1] * arrow_length
dz = dir_vec[2] * arrow_length
color = cmap(time_norm)
ax.quiver(x0, y0, z0, dx, dy, dz, color=color, length=1.0, normalize=False, arrow_length_ratio=0.1)
# Add a color bar for observation times
mappable = plt.cm.ScalarMappable(cmap=cmap)
mappable.set_array(times)
plt.colorbar(mappable, ax=ax, label='Observation Time (MJD)')
ax.legend()
plt.colorbar(sc, ax=ax, label='Average Brightness')
ax.set_title('3D Visualization of Detected Objects, Earth Positions, and Camera Directions')
ax.set_xlabel('X (m)')
ax.set_ylabel('Y (m)')
ax.set_zlabel('Z (m)')
ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
ax.set_zlim(z_min, z_max)
plt.show()
else:
print("No significant voxels found to visualize.")
# Visualize a 2D slice of the voxel grid
voxel_grid_avg = voxel_grid / len(fits_files_sorted)
z_slice_index = voxel_grid_avg.shape[2] // 2
voxel_slice = voxel_grid_avg[:, :, z_slice_index]
plt.figure(figsize=(8, 6))
plt.imshow(voxel_slice.T, origin='lower', cmap='hot', extent=(x_min, x_max, y_min, y_max))
plt.colorbar(label='Average Brightness')
z_slice_pos = z_min + z_slice_index * (z_max - z_min) / voxel_grid_avg.shape[2]
plt.title(f'Voxel Grid Slice at z = {z_slice_pos:.2f} meters')
plt.xlabel('X (m)')
plt.ylabel('Y (m)')
plt.show()
if __name__ == '__main__':
main()