|
1 | 1 | \documentclass[english]{article} |
2 | 2 | %DIF LATEXDIFF DIFFERENCE FILE |
3 | 3 | %DIF DEL old.tex Wed Jan 13 12:48:03 2021 |
4 | | -%DIF ADD main.tex Thu Jun 10 12:09:39 2021 |
| 4 | +%DIF ADD main.tex Thu Jun 10 12:23:36 2021 |
5 | 5 | \usepackage{graphicx} |
6 | 6 | \usepackage{amsmath} |
7 | 7 | \usepackage{hyperref} |
@@ -1345,18 +1345,20 @@ \subsubsection*{Synthetic data: simulating dynamic high-order |
1345 | 1345 | }\end{align*}%DIFAUXCMD |
1346 | 1346 | %DIFDELCMD < %%% |
1347 | 1347 | \DIFdel{We can then use repeated applications of |
1348 | | - Equations~\ref{eqn:highorder-gen1} and~\ref{eqn:highorder-gen2} in |
1349 | | - order to obtain a synthetic dataset. |
1350 | | -}%DIFDELCMD < |
| 1348 | + Equations~\ref{eqn:highorder-gen1} and ~\ref{eqn:highorder-gen2} in |
| 1349 | + order to |
| 1350 | +obtain a synthetic dataset. }%DIFDELCMD < |
1351 | 1351 |
|
1352 | 1352 | %DIFDELCMD < %%% |
1353 | | -\DIFdel{When the template first-order correlations are constructed to |
1354 | | -exhibit different |
| 1353 | +\DIFdel{When the template first-order correlations are constructed to exhibit different |
1355 | 1354 | temporal profiles (e. g., using the constant, random, ramping, and |
1356 | 1355 | event procedures described above) , }\DIFdelend \DIFaddbegin \DIFadd{(for $n > 1$) by taking a draw from |
1357 | 1356 | $\mathcal{N}\left(0, m_n\right)$ and reshaping the resulting vector to |
1358 | | -have square dimensions. Intuitively, }\DIFaddend the \DIFdelbegin \DIFdel{resulting }\DIFdelend \DIFaddbegin \DIFadd{re-shaped matrix will look |
1359 | | -like a noisy version of the template matrix, $m_{n-1}$. (When |
| 1357 | +have square dimensions. To force the resulting matrix to be |
| 1358 | +symmetric, we remove its lower triangle, and replace the lower |
| 1359 | +triangle with (a reflected version |
| 1360 | +of) its upper triangle. Intuitively, }\DIFaddend the resulting \DIFaddbegin \DIFadd{re-shaped matrix will look |
| 1361 | +like a noisy (but symmetric) version of the template matrix, $m_{n-1}$. (When |
1360 | 1362 | $n = 1$, no re-shaping is needed; the resulting $K$-dimensional vector |
1361 | 1363 | may be used as the observation at the given timepoint.) After |
1362 | 1364 | independently drawing each timepoint's order $n-1$ correlation matrix |
|
0 commit comments