You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+5-31Lines changed: 5 additions & 31 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -51,16 +51,8 @@ by [deepset](https://www.deepset.ai). Couchbase supports three types of [vector
51
51
52
52
The library provides two document store implementations:
53
53
54
-
1.**`CouchbaseSearchDocumentStore`** - Uses Couchbase Search Vector Index (FTS-based)
55
-
- Best for: Hybrid searches combining vector, full-text, and geospatial searches
56
-
- Dataset size: Up to ~100 million documents
57
-
- Use case: E-commerce, travel recommendations with complex search requirements
58
-
59
-
2.**`CouchbaseQueryDocumentStore`** - Uses Couchbase Global Secondary Index (GSI) with vector support
60
-
- Supports both **Hyperscale Vector Index** and **Composite Vector Index**
61
-
- Best for: Pure vector searches or filtered vector searches at massive scale
62
-
- Dataset size: Tens of millions to billions of documents
63
-
- Use case: Content recommendations, chatbots, anomaly detection, job searches
54
+
-**`CouchbaseSearchDocumentStore`** - Uses Couchbase Search Vector Index (FTS-based)
55
+
-**`CouchbaseQueryDocumentStore`** - Uses Hyperscale Vector Index or Composite Vector Index
64
56
65
57
You can start working with these implementations by importing from the `couchbase_haystack` package:
66
58
@@ -99,7 +91,7 @@ Couchbase supports three types of vector indexes. This library currently support
99
91
100
92
-**Use `CouchbaseSearchDocumentStore`** when:
101
93
- You need to combine vector searches with full-text or geospatial searches
102
-
- Your dataset is under 100 million documents
94
+
- Your dataset is limited to approximately 100 million documents
103
95
- You want hybrid search capabilities in a single query
104
96
105
97
-**Use `CouchbaseQueryDocumentStore` with Hyperscale Index** when:
@@ -152,8 +144,6 @@ In this example, the container is started using Couchbase Server version `7.6.2`
152
144
153
145
### CouchbaseSearchDocumentStore (FTS-based)
154
146
155
-
The `CouchbaseSearchDocumentStore` uses Couchbase's Search Service with FTS (Full-Text Search) vector indexes. It's ideal for hybrid searches that combine vector similarity with full-text and geospatial queries.
156
-
157
147
```text
158
148
+-----------------------------+
159
149
| Couchbase Database |
@@ -180,7 +170,7 @@ The `CouchbaseSearchDocumentStore` uses Couchbase's Search Service with FTS (Ful
180
170
+-----------------------------+
181
171
```
182
172
183
-
The document store supports both scope-level and global-level vector search indexes:
173
+
The `CouchbaseSearchDocumentStore`document store supports both scope-level and global-level vector search indexes:
184
174
185
175
-**Scope-level indexes** (default): Created at the scope level, searches only within that scope
186
176
-**Global-level indexes**: Created at the bucket level, can search across all scopes and collections
The `CouchbaseQueryDocumentStore`uses Couchbase Global Secondary Index (GSI) for high-performance vector search at massive scale. Supports both **Hyperscale Vector Index** and **Composite Vector Index**using SQL++ queries.
384
+
The `CouchbaseQueryDocumentStore`supports both **Hyperscale Vector Index** and **Composite Vector Index**types, depending on the underlying indexes you have set up in Couchbase.
395
385
396
386
```text
397
387
+-----------------------------+
@@ -443,7 +433,6 @@ from haystack.utils.auth import Secret
443
433
from couchbase.n1ql import QueryScanConsistency
444
434
from datetime import timedelta
445
435
446
-
# Example 1: Using (Hyperscale Vector Index) for pure vector search
> **Note:** You need to create the appropriate GSI index manually in Couchbase before performing vector search. See the [Couchbase documentation](https://docs.couchbase.com/server/current/n1ql/n1ql-language-reference/createindex.html) for index creation details.
0 commit comments