Skip to content

Commit df57916

Browse files
committed
docs update
1 parent bec396b commit df57916

File tree

1 file changed

+5
-31
lines changed

1 file changed

+5
-31
lines changed

README.md

Lines changed: 5 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -51,16 +51,8 @@ by [deepset](https://www.deepset.ai). Couchbase supports three types of [vector
5151

5252
The library provides two document store implementations:
5353

54-
1. **`CouchbaseSearchDocumentStore`** - Uses Couchbase Search Vector Index (FTS-based)
55-
- Best for: Hybrid searches combining vector, full-text, and geospatial searches
56-
- Dataset size: Up to ~100 million documents
57-
- Use case: E-commerce, travel recommendations with complex search requirements
58-
59-
2. **`CouchbaseQueryDocumentStore`** - Uses Couchbase Global Secondary Index (GSI) with vector support
60-
- Supports both **Hyperscale Vector Index** and **Composite Vector Index**
61-
- Best for: Pure vector searches or filtered vector searches at massive scale
62-
- Dataset size: Tens of millions to billions of documents
63-
- Use case: Content recommendations, chatbots, anomaly detection, job searches
54+
- **`CouchbaseSearchDocumentStore`** - Uses Couchbase Search Vector Index (FTS-based)
55+
- **`CouchbaseQueryDocumentStore`** - Uses Hyperscale Vector Index or Composite Vector Index
6456

6557
You can start working with these implementations by importing from the `couchbase_haystack` package:
6658

@@ -99,7 +91,7 @@ Couchbase supports three types of vector indexes. This library currently support
9991

10092
- **Use `CouchbaseSearchDocumentStore`** when:
10193
- You need to combine vector searches with full-text or geospatial searches
102-
- Your dataset is under 100 million documents
94+
- Your dataset is limited to approximately 100 million documents
10395
- You want hybrid search capabilities in a single query
10496

10597
- **Use `CouchbaseQueryDocumentStore` with Hyperscale Index** when:
@@ -152,8 +144,6 @@ In this example, the container is started using Couchbase Server version `7.6.2`
152144
153145
### CouchbaseSearchDocumentStore (FTS-based)
154146

155-
The `CouchbaseSearchDocumentStore` uses Couchbase's Search Service with FTS (Full-Text Search) vector indexes. It's ideal for hybrid searches that combine vector similarity with full-text and geospatial queries.
156-
157147
```text
158148
+-----------------------------+
159149
| Couchbase Database |
@@ -180,7 +170,7 @@ The `CouchbaseSearchDocumentStore` uses Couchbase's Search Service with FTS (Ful
180170
+-----------------------------+
181171
```
182172

183-
The document store supports both scope-level and global-level vector search indexes:
173+
The `CouchbaseSearchDocumentStore` document store supports both scope-level and global-level vector search indexes:
184174

185175
- **Scope-level indexes** (default): Created at the scope level, searches only within that scope
186176
- **Global-level indexes**: Created at the bucket level, can search across all scopes and collections
@@ -391,7 +381,7 @@ documents: List[Document] = result["retriever"]["documents"]
391381

392382
### CouchbaseQueryDocumentStore (GSI-based)
393383

394-
The `CouchbaseQueryDocumentStore` uses Couchbase Global Secondary Index (GSI) for high-performance vector search at massive scale. Supports both **Hyperscale Vector Index** and **Composite Vector Index** using SQL++ queries.
384+
The `CouchbaseQueryDocumentStore` supports both **Hyperscale Vector Index** and **Composite Vector Index** types, depending on the underlying indexes you have set up in Couchbase.
395385

396386
```text
397387
+-----------------------------+
@@ -443,7 +433,6 @@ from haystack.utils.auth import Secret
443433
from couchbase.n1ql import QueryScanConsistency
444434
from datetime import timedelta
445435

446-
# Example 1: Using (Hyperscale Vector Index) for pure vector search
447436
document_store_hyperscale = CouchbaseQueryDocumentStore(
448437
cluster_connection_string=Secret.from_env_var("CB_CONNECTION_STRING"),
449438
authenticator=CouchbasePasswordAuthenticator(
@@ -461,21 +450,6 @@ document_store_hyperscale = CouchbaseQueryDocumentStore(
461450
scan_consistency=QueryScanConsistency.NOT_BOUNDED
462451
)
463452
)
464-
465-
# Example 2: Using Composite Vector Index for filtered searches
466-
document_store_composite = CouchbaseQueryDocumentStore(
467-
cluster_connection_string=Secret.from_env_var("CB_CONNECTION_STRING"),
468-
authenticator=CouchbasePasswordAuthenticator(
469-
username=Secret.from_env_var("CB_USERNAME"),
470-
password=Secret.from_env_var("CB_PASSWORD")
471-
),
472-
bucket="haystack_bucket_name",
473-
scope="haystack_scope_name",
474-
collection="haystack_collection_name",
475-
search_type=QueryVectorSearchType.ANN,
476-
similarity=QueryVectorSearchSimilarity.COSINE,
477-
nprobes=10
478-
)
479453
```
480454

481455
> **Note:** You need to create the appropriate GSI index manually in Couchbase before performing vector search. See the [Couchbase documentation](https://docs.couchbase.com/server/current/n1ql/n1ql-language-reference/createindex.html) for index creation details.

0 commit comments

Comments
 (0)