-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStats_Analysis.py
56 lines (38 loc) · 1.22 KB
/
Stats_Analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# -*- coding: utf-8 -*-
"""
Created on Fri Jul 16 13:31:27 2021
@author: dani
"""
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib
from scipy.spatial.distance import euclidean
file = r'./Stats/Log.txt'
cols = ['Slice','X','Y','Distances','Mean_Dist','Stdev_Dist']
df = pd.read_csv(file, delim_whitespace=True)
#s_names = ['_','Spread','MultiCluster','MegaCluster']
#df['Distances'], df['Mean_Dist'], df['Stdev_Dist'] = '','',''
#def distance(i,j):
# dx = i[0] - j[0]
# dy = i[1] - j[1]
# D = np.sqrt(dx*dx + dy*dy)
#
# return D
d_arrays, means, stdevs = [],[],[]
CoVs = []
for i, row in df.iterrows():
a = (row[1], row[2])
others = [ (x[1],x[2]) for n, x in df.iterrows() if (n != i and x[0] == row[0]) ]
distances = [ euclidean (a,b) for b in others ]
d_arrays.append(distances)
means.append(np.mean(distances))
stdevs.append(np.std(distances))
CoVs.append(np.std(distances)/ np.mean(distances))
df['Distances'] = d_arrays
df['Mean_Dist'] = means
df['Stdev_Dist'] = stdevs
df['Coeff_Var'] = CoVs
df['SliceName'] = ['Spread']*27 + ['MultiCluster']*27 + ['MegaCluster']*27
use_cols = df.columns[4:]
groups = df.groupby('SliceName')[use_cols]