Skip to content

np.int在新NumPy中被弃用导致500 POST /api/tr-run/ (198.18.0.1) #466

@xingqimiao

Description

@xingqimiao

完整覆盖本地的 dbnet/decode.py 文件的所有内容即可修复

dbnet/decode.py

import cv2
import numpy as np
import pyclipper
from shapely.geometry import Polygon

class SegDetectorRepresenter:
def init(self, thresh=0.3, box_thresh=0.5, max_candidates=1000, unclip_ratio=2.0):
self.min_size = 3
self.thresh = thresh
self.box_thresh = box_thresh
self.max_candidates = max_candidates
self.unclip_ratio = unclip_ratio

def __call__(self, pred, height, width):
    """
    batch: (image, polygons, ignore_tags
    batch: a dict produced by dataloaders.
        image: tensor of shape (N, C, H, W).
        polygons: tensor of shape (N, K, 4, 2), the polygons of objective regions.
        ignore_tags: tensor of shape (N, K), indicates whether a region is ignorable or not.
        shape: the original shape of images.
        filename: the original filenames of images.
    pred:
        binary: text region segmentation map, with shape (N, H, W)
        thresh: [if exists] thresh hold prediction with shape (N, H, W)
        thresh_binary: [if exists] binarized with threshhold, (N, H, W)
    """

    pred = pred[0, :, :]
    segmentation = self.binarize(pred)
    
    boxes, scores = self.boxes_from_bitmap(pred, segmentation, width, height)
    
    return boxes, scores

def binarize(self, pred):
    return pred > self.thresh

def boxes_from_bitmap(self, pred, bitmap, dest_width, dest_height):
    """
    _bitmap: single map with shape (H, W),
        whose values are binarized as {0, 1}
    """
    
    assert len(bitmap.shape) == 2
    height, width = bitmap.shape
    contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    num_contours = min(len(contours), self.max_candidates)
    boxes = np.zeros((num_contours, 4, 2), dtype=np.int16)
    scores = np.zeros((num_contours,), dtype=np.float32)

    for index in range(num_contours):
        contour = contours[index].squeeze(1)
        points, sside = self.get_mini_boxes(contour)
        if sside < self.min_size:
            continue
        points = np.array(points)
        score = self.box_score_fast(pred, contour)
        if self.box_thresh > score:
            continue
        box = self.unclip(points, unclip_ratio=self.unclip_ratio).reshape(-1, 1, 2)
        box, sside = self.get_mini_boxes(box)
        if sside < self.min_size + 2:
            continue
        box = np.array(box)
        if not isinstance(dest_width, int):
            dest_width = dest_width.item()
            dest_height = dest_height.item()
        
        box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
        box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height)
        boxes[index, :, :] = box.astype(np.int16)
        scores[index] = score
    return boxes, scores

def unclip(self, box, unclip_ratio=1.5):
    poly = Polygon(box)
    distance = poly.area * unclip_ratio / (poly.length if poly.length != 0 else 1) # Safely handle zero length
    offset = pyclipper.PyclipperOffset()
    offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
    expanded = np.array(offset.Execute(distance))
    return expanded

def get_mini_boxes(self, contour):
    bounding_box = cv2.minAreaRect(contour)
    points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
    
    index_1, index_2, index_3, index_4 = 0, 1, 2, 3
    if points[1][1] > points[0][1]:
        index_1 = 0
        index_4 = 1
    else:
        index_1 = 1
        index_4 = 0
    if points[3][1] > points[2][1]:
        index_2 = 2
        index_3 = 3
    else:
        index_2 = 3
        index_3 = 2
    
    box = [points[index_1], points[index_2], points[index_3], points[index_4]]
    return box, min(bounding_box[1]) if bounding_box[1][0] > 0 and bounding_box[1][1] > 0 else 0

def box_score_fast(self, bitmap, _box):
    h, w = bitmap.shape[:2]
    box = _box.copy()
    
    # 【BUG修复处】将所有的 np.int 替换为 Python 内置的 int
    xmin = np.clip(np.floor(box[:, 0].min()).astype(int), 0, w - 1)
    xmax = np.clip(np.ceil(box[:, 0].max()).astype(int), 0, w - 1)
    ymin = np.clip(np.floor(box[:, 1].min()).astype(int), 0, h - 1)
    ymax = np.clip(np.ceil(box[:, 1].max()).astype(int), 0, h - 1)
    
    mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
    box[:, 0] = box[:, 0] - xmin
    box[:, 1] = box[:, 1] - ymin
    cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
    return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions