@@ -18,9 +18,9 @@ type eq_config =
1818 ; symb_refl : sym (* * Reflexivity of equality. *) }
1919
2020(* * [get_eq_config ss pos] returns the current configuration for
21- equality, used by tactics such as “ rewrite” or “ reflexivity” . *)
21+ equality, used by tactics such as " rewrite" or " reflexivity" . *)
2222let get_eq_config : Sig_state.t -> popt -> eq_config = fun ss pos ->
23- let builtin = Builtin. find_builtin ss pos in
23+ let builtin name = Builtin. get ss ~ pos name in
2424 { symb_P = builtin " P"
2525 ; symb_T = builtin " T"
2626 ; symb_eq = builtin " eq"
@@ -50,10 +50,10 @@ let _ =
5050 let register_builtin =
5151 Builtin. register_expected_type (Eval. eq_modulo [] ) term
5252 in
53- let expected_eq_type pos map =
53+ let expected_eq_type ss pos =
5454 (* [Π (a:U), T a → T a → Prop] *)
55- let symb_T = Builtin. find_builtin pos map " T" in
56- let symb_P = Builtin. find_builtin pos map " P" in
55+ let symb_T = Builtin. get ss ~pos " T" in
56+ let symb_P = Builtin. get ss ~pos " P" in
5757 let term_U = get_domain_of_type symb_T in
5858 let term_Prop = get_domain_of_type symb_P in
5959 let a = new_var " a" in
@@ -62,11 +62,11 @@ let _ =
6262 mk_Prod (term_U, bind_var a impls)
6363 in
6464 register_builtin " eq" expected_eq_type;
65- let expected_refl_type pos map =
65+ let expected_refl_type ss pos =
6666 (* [Π (a:U) (x:T a), P (eq a x x)] *)
67- let symb_T = Builtin. find_builtin pos map " T" in
68- let symb_P = Builtin. find_builtin pos map " P" in
69- let symb_eq = Builtin. find_builtin pos map " eq" in
67+ let symb_T = Builtin. get ss ~pos " T" in
68+ let symb_P = Builtin. get ss ~pos " P" in
69+ let symb_eq = Builtin. get ss ~pos " eq" in
7070 let term_U = get_domain_of_type symb_T in
7171 let a = new_var " a" in
7272 let x = new_var " x" in
@@ -78,13 +78,13 @@ let _ =
7878 mk_Prod (term_U, bind_var a prod)
7979 in
8080 register_builtin " refl" expected_refl_type;
81- let expected_eqind_type pos map =
81+ let expected_eqind_type ss pos =
8282 (* [Π (a:U) (x y:T a), P (eq x y) → Π (p:T a→Prop), P (p y) → P (p x)] *)
83- let symb_T = Builtin. find_builtin pos map " T" in
83+ let symb_T = Builtin. get ss ~pos " T" in
8484 let term_T = mk_Symb symb_T in
85- let symb_P = Builtin. find_builtin pos map " P" in
85+ let symb_P = Builtin. get ss ~pos " P" in
8686 let term_P = mk_Symb symb_P in
87- let symb_eq = Builtin. find_builtin pos map " eq" in
87+ let symb_eq = Builtin. get ss ~pos " eq" in
8888 let term_eq = mk_Symb symb_eq in
8989 let term_U = get_domain_of_type symb_T in
9090 let term_Prop = get_domain_of_type symb_P in
0 commit comments