-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
53 lines (43 loc) · 2.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import numpy as np
from market_insight.data.data_handler import AlphavantageDataHandler, PolygonDataHandler
from market_insight.models.lstm_model import LSTM
from market_insight.training.trainer import Trainer
from market_insight.prediction.predictor import Predictor
from torch.utils.data import Dataset
import os
class StockDataset(Dataset):
def __init__(self, series, sequence_length):
self.data = series
self.sequence_length = sequence_length
def __len__(self):
return len(self.data) - self.sequence_length
def __getitem__(self, index):
sequence = self.data[index:index+self.sequence_length]
label = self.data[index+self.sequence_length]
return (sequence.unsqueeze(1), label)
def train_and_save_model_for_symbol(symbol):
# alpha_vantage_api_key =os.environ.get('ALPHA_VANTAGE_API_KEY')
# data_handler = AlphavantageDataHandler(api_key='alpha_vantage_api_key)
poligon_api_key = os.environ.get('POLIGON_API_KEY')
data_handler = PolygonDataHandler(api_key=poligon_api_key)
data = data_handler.get_historical_data(symbol)
scaled_data, scaler = data_handler.preprocess_data(data)
# Extract the last sequence
last_sequence = scaled_data[-60:] # Assuming your model uses the last 60 data points
model = LSTM()
train_dataset = StockDataset(scaled_data, 60)
trainer = Trainer(model, train_dataset)
trainer.train_model()
# Save Model, Scaler, and Last Sequence with symbol as part of the filename
model_filename = f'model/{symbol}_lstm_model.pth'
scaler_filename = f'model/{symbol}_scaler.pth'
last_sequence_filename = f'model/{symbol}_last_sequence.pth'
torch.save(model.state_dict(), model_filename)
torch.save(scaler, scaler_filename)
torch.save(last_sequence, last_sequence_filename)
print(f"Model, scaler, and last sequence for {symbol} saved as {model_filename}, {scaler_filename}, and {last_sequence_filename}")
if __name__ == "__main__":
stock_symbols = ['AAPL'] # List of stock symbols
for symbol in stock_symbols:
train_and_save_model_for_symbol(symbol)