-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
425 lines (355 loc) · 19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# coding=utf-8
from __future__ import absolute_import, division, print_function
import logging
import os
import random
import jsonlines
import numpy as np
import torch
from torch.utils.data import (RandomSampler, SequentialSampler, WeightedRandomSampler)
from tensorboardX import SummaryWriter
import torchcontrib
from tqdm import tqdm, trange
from utils.optimizers import Optimizer
from pytorch_transformers import (BertConfig, BertTokenizer, RobertaTokenizer,
BertForSequenceClassification)
from model import (SyntaxBertForSequenceClassification, SyntaxBertForTokenClassification,
SyntaxBertConfig, GNNClassifier,
SyntaxRobertaForTokenClassification, SyntaxRobertaConfig)
from utils.utils import (output_modes, processors, scorer)
from utils.loader import FeaturizedDataset, FeaturizedDataLoader
from utils import constant
from utils.update_config import update_config_file
from opt import get_args
logger = logging.getLogger(__name__)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig,)), ())
MODEL_CLASSES = {
'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
'syntax_bert_seq': (SyntaxBertConfig, SyntaxBertForSequenceClassification, BertTokenizer),
'syntax_bert_tok': (SyntaxBertConfig, SyntaxBertForTokenClassification, BertTokenizer),
'gcn': (SyntaxBertConfig, GNNClassifier, BertTokenizer),
'syntax_roberta_tok': (SyntaxRobertaConfig, SyntaxRobertaForTokenClassification, RobertaTokenizer)
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_dataset, model, tokenizer, config, loading_info=None):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
print(model)
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset)
train_dataloader = FeaturizedDataLoader(train_dataset,
args,
eval=False,
batch_size=args.train_batch_size,
sampler=train_sampler)
def check_no_decay(var_name):
no_decay = ['bias', 'LayerNorm.weight']
for param in no_decay:
if param in var_name:
return True
return False
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
n_params = sum([p.nelement() for p in model.parameters()])
print(f'* number of parameters: {n_params}')
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
optimizer, scheduler = Optimizer()(model.named_parameters(),
config.optimizer)
scheduler.fit(t_total)
if args.use_swa:
swa_optimizer = torchcontrib.optim.SWA(optimizer,
swa_start=1,
swa_freq=len(train_dataloader))
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps *
(torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
logging_loss, max_score = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs),
desc="Epoch",
disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproducibility (even between python 2 and 3)
for epoch in train_iterator:
tr_loss = 0.0
grad_norm = 0.
epoch_iterator = tqdm(train_dataloader,
desc="Iteration",
disable=args.local_rank not in [-1, 0])
score_cls, score_map = scorer[args.task_name]
score = score_cls(score_map)
for step, batch in enumerate(epoch_iterator):
model.train()
dict_ = model(**batch)
loss, preds = dict_['loss'], dict_['predict']
score.update(preds,
batch['labels'],
batch['verb_index'],
batch['input_tokens'],
training=True)
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
gnorm = torch.nn.utils.clip_grad_norm_(model.parameters(),
args.max_grad_norm)
grad_norm += gnorm
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
scheduler.step() # Update learning rate schedule
if args.use_swa:
swa_optimizer.step()
else:
optimizer.step()
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
tb_writer.add_scalar('gradient_norm', gnorm, global_step)
logging_loss = tr_loss
logger.info('training loss = {} | global step = {}'.format(tr_loss/ (step + 1), global_step))
logger.info("Training Scores")
score.get_stats(training=True)
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer, split='dev')
eval_f1 = results['f1-measure-overall']
eval_loss = results['eval_loss']
tb_writer.add_scalar('eval_F1', eval_f1, global_step)
logger.info('eval loss = {} | best dev F1 = {} | global step = {}'.format(eval_loss, max_score, global_step))
if eval_f1 > max_score:
max_score = eval_f1
output_dir = os.path.join(args.output_dir, f'checkpoint-best-model')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info(f'New Best F1 Score!! Saving best model checkpoint to {output_dir}')
logger.info(f'Average Gradient Norm at step {global_step}: {grad_norm / (step + 1)}')
if 0 < args.max_steps < global_step:
epoch_iterator.close()
break
if 0 < args.max_steps < global_step:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
if args.use_swa:
swa_optimizer.swap_swa_sgd()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix='', split='dev'):
eval_task = args.task_name
eval_output_dir = args.output_dir
eval_dataset = load_and_cache_examples(args,
eval_task,
tokenizer,
split=split)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = FeaturizedDataLoader(eval_dataset,
args,
eval=True,
batch_size=args.eval_batch_size,
sampler=eval_sampler)
logger.info("***** Running evaluation {} / Num Examples {} *****".format(prefix, len(eval_dataset)))
eval_loss = 0.0
nb_eval_steps = 0
score_cls, score_map = scorer[args.task_name]
score = score_cls(score_map)
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
guid = batch.pop("guid")
with torch.no_grad():
dict_ = model(**batch)
loss, preds = dict_['loss'], dict_['predict']
eval_loss += loss.mean().item()
nb_eval_steps += 1
score.update(preds,
batch['labels'],
batch['verb_index'],
batch['input_tokens'],
guid)
# Write the Overall eval results to a file
if args.write_eval_results:
with jsonlines.open(args.output_dir + f'{args.task_name}_{split}_eval_overall.jsonl', 'w') as writer:
for dict_ in score._overall:
writer.write(dict_)
eval_loss = eval_loss / nb_eval_steps
logger.info("Evaluation Scores")
results = score.get_stats()
results['eval_loss'] = eval_loss
return results
def load_and_cache_examples(args, task, tokenizer, split='train'):
# Make sure only the first process in distributed training process the dataset,
# and the others will use the cache
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
processor = processors[task]()
# Load data features from cache or dataset file
cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(split,
list(filter(None,
args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length),
str(task)))
if os.path.exists(cached_features_file):
logger.info("Loading features from cached file %s", cached_features_file)
dataset = FeaturizedDataset(torch.load(cached_features_file), cached_features=True)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
label_map = processor.get_labels()
if split == 'train':
examples = processor.get_train_examples(args.data_dir)
# Adding Special relation masking tokens for TACRED dataset
if task == 'tacred':
class_sample_count = torch.FloatTensor([processor.class_weight[l] for l in label_map])
args.weight = class_sample_count / class_sample_count.sum()
elif split == 'dev':
examples = processor.get_dev_examples(args.data_dir)
else:
examples = processor.get_test_examples(args.data_dir)
dataset = FeaturizedDataset(examples,
args,
tokenizer,
label_map,
cls_token_segment_id=0,
pad_token_segment_id=0)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(dataset.data, cached_features_file)
# Make sure only the first process in distributed training process the dataset,
# and the others will use the cache
if args.local_rank == 0:
torch.distributed.barrier()
return dataset
def main():
args = get_args()
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Prepare task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
args.output_mode = output_modes[args.task_name]
label_map = processor.get_labels()
args.num_labels = len(label_map)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case)
if args.add_masked_ne_tokens and args.task_name == 'tacred':
special_tokens_dict = {'additional_special_tokens': list(constant.TACRED_SPECIAL_ENTITY_SET)}
tokenizer.add_special_tokens(special_tokens_dict)
print(f"Adding {len(constant.TACRED_SPECIAL_ENTITY_SET)} new tokens to vocabulary correspondng to Entity Masking")
if args.update_config_str:
args.config_name_or_path = update_config_file(args.config_name_or_path,
args.update_config_str)
config = config_class.from_pretrained(args.config_name_or_path,
num_labels=args.num_labels,
finetuning_task=args.task_name)
config.label_map = label_map
if not args.no_pretrained:
model, loading_info = model_class.from_pretrained(args.model_name_or_path,
from_tf=bool('.ckpt' in args.model_name_or_path),
config=config,
output_loading_info=True)
else:
model = model_class(config=config)
loading_info = None
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args,
args.task_name,
tokenizer,
split='train')
# Initializing the bias of the classifier layer in proportion to number of class examples respectively,
# model.classifier.bias.data = torch.Tensor(constant.TACRED_CLASS_WEIGHTS).to(args.device)
# Resize token embeddings in case extra vocabulary has been added
model.resize_token_embeddings(len(tokenizer))
global_step, tr_loss = train(args,
train_dataset,
model,
tokenizer,
config,
loading_info)
logger.info("global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
# Evaluate the best model on Test set
if not args.use_swa:
checkpoint = os.path.join(args.output_dir, 'checkpoint-best-model')
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args,
model,
tokenizer,
split='dev')
fstr_dev = f"Best Dev: P: {result['precision-overall'] * 100:.2f} | R: {result['recall-overall'] * 100:.2f} | F1 {result['f1-measure-overall'] * 100:.2f}"
print(fstr_dev + '\n')
result = evaluate(args,
model,
tokenizer,
split='test')
fstr_test = f"Test: P: {result['precision-overall'] * 100:.2f} | R: {result['recall-overall'] * 100:.2f} | F1 {result['f1-measure-overall'] * 100:.2f}"
print(fstr_test + '\n')
with open(args.output_dir + f'{args.task_name}_results.txt', 'w') as fp:
fp.write(fstr_dev)
fp.write(fstr_test)
if __name__ == "__main__":
main()