Skip to content

Commit 9b9e981

Browse files
committed
feat: new article
1 parent 65b822c commit 9b9e981

File tree

1 file changed

+6
-0
lines changed

1 file changed

+6
-0
lines changed

_posts/2020-01-30-cox_proportional_hazards_model.md

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -21,6 +21,8 @@ keywords:
2121
- Censored Data
2222
- Hazard Ratios
2323
- Proportional Hazards Assumption
24+
- r
25+
- python
2426
seo_description: Explore the Cox Proportional Hazards Model and its application in survival analysis, with examples from clinical trials and medical research.
2527
seo_title: Understanding Cox Proportional Hazards Model for Medical Survival Analysis
2628
seo_type: article
@@ -32,6 +34,8 @@ tags:
3234
- Clinical Trials
3335
- Time-to-Event Data
3436
- Censored Data
37+
- r
38+
- python
3539
title: 'Cox Proportional Hazards Model: A Guide to Survival Analysis in Medical Studies'
3640
---
3741

@@ -90,6 +94,7 @@ h(t \mid X_i) = h_0(t) \cdot \exp(\beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \bet
9094
$$
9195

9296
Where:
97+
9398
- $$h_0(t)$$ is the **baseline hazard**, representing the hazard function for an individual with baseline (or zero) values for all covariates.
9499
- $$X_i$$ is a vector of covariates for individual $$i$$.
95100
- $$\beta_1, \dots, \beta_p$$ are the regression coefficients corresponding to the covariates.
@@ -132,6 +137,7 @@ h(t \mid X) = h_0(t) \cdot \exp(\beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p)
132137
$$
133138

134139
Where:
140+
135141
- $$h(t \mid X)$$ is the hazard function at time $$t$$ given the covariate values.
136142
- $$h_0(t)$$ is the **baseline hazard function**, representing the hazard for an individual with all covariates set to zero.
137143
- $$\beta_1, \dots, \beta_p$$ are the **regression coefficients** that quantify the relationship between the covariates and the hazard.

0 commit comments

Comments
 (0)