Skip to content

Commit af77162

Browse files
committed
Merge branch 'master' into codex/update-styles-and-verify-appearance
2 parents d36b295 + 9f96279 commit af77162

24 files changed

+2365
-117
lines changed

.stylelintrc.json

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
{
2+
"extends": "stylelint-config-standard"
3+
}
4+

README.md

Lines changed: 8 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -39,6 +39,14 @@ npm run build:js # minify and add banner
3939
npm run watch:js # optional: automatically rebuild on changes
4040
```
4141

42+
## CSS linting
43+
44+
Lint all SCSS files with [Stylelint](https://stylelint.io/):
45+
46+
```bash
47+
npm run lint:css
48+
```
49+
4250
## Local development
4351

4452
Install Ruby gems specified in the `Gemfile` with:
@@ -78,9 +86,6 @@ Choose a few main colours for your site (I would suggest black/white/grey but no
7886
~~Restyle your article detail page breadcrumbs. You want them to be less visible (I would suggest a light grey colour here)~~
7987

8088
Right now at the top of the detail page, you have your site breadcrumbs, a title then another title and the font sizes are a bit off and it is hard to understand the role of the second title. I would reorganise this to provide a better understanding to the reader
81-
8289
On the detail page, I would suggest you put the `You may also enjoy` straight at the end of the article. Right now it is after comments and you can lose engagement on your site.
83-
8490
I would suggest you remove your description from the detail page. I think having it on the home page is enough. You can have a smaller introduction if needed with a read more button or link that will take the reader to a full page description of yourself and your skillset. That will allow you to tell more about yourself and why you do what you do
85-
8691
I will create card article with a hover animation (add some shape and background colour and ideally a header image for the card. The graphs you show me last week for example.)

ROADMAP.md

Lines changed: 176 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,176 @@
1+
# Roadmap de Evolução do Site
2+
3+
Este roadmap foi pensado em **sprints quinzenais** (2 semanas), para manter ritmo ágil e entregáveis claros.
4+
5+
---
6+
7+
## 📌 Visão Geral das Sprints
8+
9+
| Sprint | Duração | Foco Principal |
10+
|--------|---------------|------------------------------------|
11+
| 1 | 12–25 Maio | Fundamentos de Design |
12+
| 2 | 26 Maio–8 Jun | Layout e Navegação |
13+
| 3 | 9–22 Jun | Funcionalidades Avançadas |
14+
| 4 | 23 Jun–6 Jul | Otimização e Acessibilidade |
15+
| 5 | 7–20 Jul | QA, Monitorização e Lançamento |
16+
17+
---
18+
19+
## Sprint 1 (12–25 Maio) – Fundamentos de Design
20+
21+
### Objetivo
22+
Criar identidade visual forte e consistente.
23+
24+
### Tarefas
25+
1. **Audit de Design atual**
26+
- Revisar cores, tipografia e espaçamentos
27+
- Gerar moodboard com referências de UI
28+
29+
2. **Tipografia**
30+
- Integrar Google Fonts (“Inter” + “Nunito Sans”)
31+
- Ajustar variáveis SCSS:
32+
```scss
33+
$body-font-family: 'Inter', system-ui, sans-serif;
34+
$heading-font-family: 'Nunito Sans', system-ui, sans-serif;
35+
$base-font-size: 1rem;
36+
$h1-size: 2.75rem; // +10%
37+
```
38+
39+
3. **Paleta de Cores**
40+
- Definir 5 cores principais (primary, secondary, bg, surface, accent)
41+
- Atualizar `_sass/minimal-mistakes/_variables.scss`
42+
43+
4. **Protótipo de Homepage**
44+
- Wireframe em Figma/Sketch
45+
- Aprovação rápida antes de codificar
46+
47+
### Entregáveis
48+
- Moodboard e esquema de cores
49+
- SCSS de variáveis pronto e testado localmente
50+
- Protótipo de homepage validado
51+
52+
---
53+
54+
## Sprint 2 (26 Maio–8 Junho) – Layout & Navegação
55+
56+
### Objetivo
57+
Reestruturar homepage e menu para melhor UX.
58+
59+
### Tarefas
60+
1. **“Splash” ou “Showcase” na Homepage**
61+
- Front-matter `layout: home` + `home.splash`
62+
- Imagem hero responsiva
63+
64+
2. **Grid de Conteúdos / Features**
65+
- Definir 4–6 blocos de destaque
66+
- Implementar CSS Grid para responsividade
67+
68+
3. **Menu Sticky & Mega-Menu**
69+
- CSS SCSS para `position: sticky` + backdrop
70+
- Estruturar `_data/navigation.yml` com categorias e subitens
71+
72+
4. **Sidebar Dinâmica**
73+
- Habilitar sidebar em `_config.yml`
74+
- Incluir tags populares, posts relacionados, call-to-action de newsletter
75+
76+
### Entregáveis
77+
- Homepage redesenhada e responsiva
78+
- Menu e sidebar funcionando em desktop e mobile
79+
- Checklist de responsividade validado
80+
81+
---
82+
83+
## Sprint 3 (9–22 Junho) – Funcionalidades Avançadas
84+
85+
### Objetivo
86+
Adicionar interatividade e usabilidade extra.
87+
88+
### Tarefas
89+
1. **Modo Claro / Escuro**
90+
- Config `_config.yml`:
91+
```yaml
92+
color_scheme:
93+
default: light
94+
alternate: dark
95+
```
96+
- Botão-toggle e persistência com localStorage
97+
98+
2. **Busca Full-text**
99+
- Integrar Lunr.js (ou Algolia, se tiver conta)
100+
- Campo de pesquisa no header e página de resultados
101+
102+
3. **Galeria e Lightbox**
103+
- Plugin Magnific Popup ou PhotoSwipe
104+
- Estilos de hover e legenda overlay
105+
106+
4. **Comentários via Utterances**
107+
- Script Utterances (comentários GitHub)
108+
- Ajustar fluxo de moderação
109+
110+
### Entregáveis
111+
- Dark mode funcional em todos os layouts
112+
- Busca indexando títulos e conteúdo
113+
- Galeria de imagens com lightbox
114+
- Seção de comentários ativa
115+
116+
---
117+
118+
## Sprint 4 (23 Junho–6 Julho) – Performance & Acessibilidade
119+
120+
### Objetivo
121+
Garantir carregamento rápido e conformidade WCAG.
122+
123+
### Tarefas
124+
1. **Otimização de Assets**
125+
- Minificar CSS/JS (Rakefile)
126+
- Converter imagens para WebP + lazy-loading
127+
128+
2. **SEO Básico**
129+
- Meta tags Open Graph e Twitter Cards
130+
- Sitemap.xml e robots.txt
131+
132+
3. **Acessibilidade (a11y)**
133+
- Testes com axe-core
134+
- Revisar landmarks, alt texts, navegação via teclado
135+
136+
4. **Monitorização**
137+
- Google Analytics / Plausible
138+
- Configurar metas de conversão (newsletter, tempo em página)
139+
140+
### Entregáveis
141+
- Relatório de performance (Lighthouse)
142+
- Checklist WCAG 2.1 atendido
143+
- Painel de analytics inicial
144+
145+
---
146+
147+
## Sprint 5 (7–20 Julho) – QA, Lançamento & Feedback
148+
149+
### Objetivo
150+
Testar, lançar e planejar iterações futuras.
151+
152+
### Tarefas
153+
1. **Testes Finais**
154+
- Cross-browser (Chrome, Firefox, Safari, Edge)
155+
- Teste em dispositivos mobile reais
156+
157+
2. **Deploy de Produção**
158+
- `JEKYLL_ENV=production bundle exec jekyll build`
159+
- Publicar no GitHub Pages
160+
161+
3. **Coleta de Feedback**
162+
- Criar formulário (Google Forms / Typeform)
163+
- Monitorar métricas 1ª semana pós-lançamento
164+
165+
4. **Planejamento da Próxima Iteração**
166+
- Analisar feedback e dados de uso
167+
- Priorizar backlog para novas features
168+
169+
### Entregáveis
170+
- Site ao vivo em produção
171+
- Relatório de bugs e feedback inicial
172+
- Roadmap de iteração 2.0
173+
174+
---
175+
176+
> **Dica extra:** faz deploy contínuo via GitHub Actions para cada push na branch `main`, assim manténs sempre o site atualizado sem dor de cabeça.

__init__.py

Whitespace-only changes.

_posts/-_ideas/2030-01-01-data_model_drift.md

Lines changed: 0 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -14,18 +14,6 @@ tags: []
1414
## Article Ideas on Data Drift and Model Drift
1515

1616

17-
### 2. **Model Drift: Why Even the Best Machine Learning Models Fail Over Time**
18-
- **Overview**: Explore the concept of model drift and how changes in the environment or target variable can degrade model accuracy.
19-
- **Focus**: Discuss the causes of model drift, including **data drift**, changes in underlying patterns, and new unseen data, with case studies on the impact of model drift in production.
20-
21-
### 3. **How to Detect Data Drift in Machine Learning Models**
22-
- **Overview**: Provide a guide to detecting data drift using statistical techniques and machine learning-based approaches.
23-
- **Focus**: Methods like **Kullback-Leibler Divergence**, **Population Stability Index (PSI)**, **Chi-square tests**, and model monitoring tools such as **NannyML** and **Evidently AI**.
24-
25-
### 4. **Techniques for Monitoring and Managing Model Drift in Production**
26-
- **Overview**: Discuss best practices for monitoring model performance over time to detect and mitigate model drift.
27-
- **Focus**: Real-time model monitoring, automated alerts, and retraining strategies to keep models performant. Introduce tools like **MLflow**, **Seldon**, and **TensorFlow Extended (TFX)**.
28-
2917
### 5. **Model Retraining Strategies to Handle Data Drift**
3018
- **Overview**: Provide strategies for handling data drift through **incremental learning**, **active learning**, or **periodic retraining**.
3119
- **Focus**: Pros and cons of different retraining approaches, and how to avoid overfitting or underfitting when adapting models to new data distributions.
Lines changed: 152 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,152 @@
1+
---
2+
author_profile: false
3+
categories:
4+
- Finance
5+
- Artificial Intelligence
6+
- Multi-Agent Systems
7+
classes: wide
8+
date: '2024-12-31'
9+
excerpt: Multi-agent systems are redefining how financial tasks like M&A analysis can be approached, using teams of collaborative LLMs with distinct responsibilities.
10+
header:
11+
image: /assets/images/data_science_14.jpg
12+
og_image: /assets/images/data_science_14.jpg
13+
overlay_image: /assets/images/data_science_14.jpg
14+
show_overlay_excerpt: false
15+
teaser: /assets/images/data_science_14.jpg
16+
twitter_image: /assets/images/data_science_14.jpg
17+
keywords:
18+
- Multi-agent LLMs
19+
- Finance automation
20+
- AutoGen
21+
- M&A analysis
22+
- CrewAI
23+
seo_description: Explore how multi-agent LLM systems like AutoGen, CrewAI, and OpenDevin can simulate collaborative roles—analyst, compliance, auditor—in complex financial workflows like M&A analysis.
24+
seo_title: Multi-Agent Collaboration in Finance with LLMs
25+
seo_type: article
26+
summary: This article explores the rise of multi-agent architectures in finance, using tools like AutoGen and CrewAI to simulate collaborative roles in tasks like M&A, compliance review, and financial reporting.
27+
tags:
28+
- LLM agents
29+
- AutoGen
30+
- CrewAI
31+
- Financial automation
32+
- M&A analysis
33+
title: 'Multi-Agent Collaboration in Finance: Building Intelligent Teams with LLMs'
34+
---
35+
36+
## Multi-Agent Collaboration in Finance
37+
38+
As financial workflows become increasingly complex, single-agent systems are often insufficient to capture the distributed expertise involved in real-world decision-making. Enter **multi-agent architectures**—systems where multiple specialized LLM agents collaborate, each playing a distinct role in tasks such as M&A analysis, regulatory review, and financial forecasting.
39+
40+
Unlike traditional automation scripts or isolated LLM prompts, these agents are designed to communicate, negotiate, verify each other’s outputs, and adapt dynamically based on changing data or goals. This mimics real-world financial teams—where analysts, lawyers, compliance officers, and executives each bring a domain-specific lens to high-stakes decisions.
41+
42+
---
43+
44+
## 📊 Example: M&A Analysis with Role-Specific Agents
45+
46+
In a typical M&A scenario, multiple perspectives are required to evaluate the viability of a deal. Here’s how a multi-agent system might simulate this:
47+
48+
- **🧠 Analyst Agent**: Gathers income statements, balance sheets, and DCF models via API queries or SQL calls. Performs financial ratio analysis and comparative valuation.
49+
50+
- **⚖️ Compliance Agent**: Checks for regulatory risks (e.g., SEC disclosures, antitrust red flags) using legal document parsers, case law databases, and predefined policy rules.
51+
52+
- **📉 Risk Agent**: Analyzes previous market reactions to similar M&A deals using time series data, Monte Carlo simulations, or sentiment classification from financial news.
53+
54+
- **📝 Reporting Agent**: Synthesizes findings from all other agents into an investment memo or pitch deck, complete with charts, disclaimers, and executive summaries.
55+
56+
This team operates within a shared environment—coordinated via a task planner (e.g., **AutoGen**, **CrewAI**, or **OpenDevin**)—allowing agents to asynchronously pass results, critique outputs, and revise their conclusions.
57+
58+
---
59+
60+
## 🔧 Frameworks for Multi-Agent Finance Systems
61+
62+
Implementing such workflows requires robust orchestration tools. Here are some of the most promising:
63+
64+
### 🧩 AutoGen
65+
66+
Developed by Microsoft, AutoGen is a conversation-driven multi-agent framework where agents communicate through messages and memory updates. It excels at:
67+
68+
- Task decomposition
69+
- Multi-turn collaboration
70+
- State tracking
71+
72+
### ⚙️ CrewAI
73+
74+
CrewAI is built around declarative pipelines. You define "crew members" (agents), their tools, and the task flow. Ideal for:
75+
76+
- Modular workflows
77+
- Role-based permissions
78+
- Chain-of-thought planning
79+
80+
### 🛠️ OpenDevin
81+
82+
Designed for developers, OpenDevin allows shell-level interaction and autonomous task execution across agents. Especially useful for integrating:
83+
84+
- CLI and system commands
85+
- Data pipelines
86+
- Testing environments
87+
88+
Each of these frameworks allows agents to leverage custom tools—Python scripts, SQL queries, REST APIs, or even financial modeling platforms like Excel or Bloomberg Terminal APIs.
89+
90+
---
91+
92+
## 🌍 Applications Beyond M&A
93+
94+
While M&A is a flagship use case, multi-agent LLM teams are equally relevant for:
95+
96+
- **Credit Risk Assessment**: Automated underwriting with agents checking credit scores, borrower history, and collateral valuation.
97+
- **Portfolio Management**: Agents simulate market scenarios, recommend rebalancing strategies, and explain allocation shifts.
98+
- **Regulatory Reporting**: Agents coordinate to prepare compliance submissions like Form ADV, Basel III reports, or ESG disclosures.
99+
100+
In each case, agents act as digital collaborators—autonomously managing subtasks, synthesizing documentation, and flagging uncertainties for human review.
101+
102+
---
103+
104+
## 💼 Why This Matters for Financial Institutions
105+
106+
### ✅ Scalability
107+
108+
By distributing work among agents, complex analyses can be parallelized—handling hundreds of deals or client reports simultaneously.
109+
110+
### 🔍 Transparency and Auditability
111+
112+
Each agent’s operations are traceable, creating an internal audit trail of decisions and data sources.
113+
114+
### ⚖️ Risk Reduction
115+
116+
Multiple agents act as internal reviewers, reducing the risk of unchecked hallucinations or flawed logic in critical outputs.
117+
118+
### 🔄 Adaptability
119+
120+
Agents can be fine-tuned or replaced independently. For example, swapping a sentiment analysis tool or updating a regulatory parser does not disrupt the entire system.
121+
122+
---
123+
124+
## 🚧 Challenges and Considerations
125+
126+
- **Latency and Cost**: Multi-agent workflows require more compute time and API calls. Caching, prompt optimization, and task batching help mitigate this.
127+
128+
- **Alignment and Control**: Ensuring agents stay within domain and legal boundaries requires rigorous system prompts, guardrails, and feedback loops.
129+
130+
- **Security**: Financial data is highly sensitive. Private deployments with encrypted communications and secure logging are non-negotiable.
131+
132+
---
133+
134+
## 🚀 The Future: AI-Powered Financial Teams
135+
136+
The shift from tool-assisted analysts to **LLM-enabled autonomous teams** signals a deeper transformation in financial services. Future systems will likely include:
137+
138+
- Real-time agent dashboards with override controls
139+
- Voice-controlled compliance copilots
140+
- Always-on agents monitoring macro trends or client portfolios
141+
142+
The vision isn’t to replace financial professionals—it’s to **amplify their judgment** with fast, consistent, and tireless AI collaborators.
143+
144+
---
145+
146+
## 🧠 Final Thoughts
147+
148+
Multi-agent LLM systems are redefining how intelligence is distributed across digital workflows. In finance, where complexity and regulation collide, the ability to break down tasks, assign responsibility, and synthesize diverse inputs is essential.
149+
150+
With frameworks like **AutoGen**, **CrewAI**, and **OpenDevin**, firms now have the tools to simulate collaborative teams that work 24/7—bringing scale, rigor, and responsiveness to high-value financial decision-making.
151+
152+
As this technology matures, the future of finance will be co-authored not by a single AI, but by a **crew of specialized agents**, working together like their human counterparts—only faster, broader, and never needing a coffee break.

0 commit comments

Comments
 (0)