@@ -8,6 +8,7 @@ It includes generators for:
88- ** Continuous-Time Markov Models (CMM)**
99- ** Time-Dependent Covariate Models (TDCM)**
1010- ** Time-Homogeneous Hidden Markov Models (THMM)**
11+ - ** Accelerated Failure Time (AFT) Log-Normal Models**
1112
1213---
1314
@@ -25,25 +26,27 @@ theory
2526# 🚀 Usage Example
2627
2728``` python
28- from gen_surv.cphm import gen_cphm
29+ from gen_surv import generate
2930
30- df = gen_cphm(n = 100 , model_cens = " uniform" , cens_par = 1.0 , beta = 0.5 , covar = 2.0 )
31- print (df.head())
32- ```
31+ # CPHM
32+ generate(model = " cphm" , n = 100 , model_cens = " uniform" , cens_par = 1.0 , beta = 0.5 , covar = 2.0 )
3333
34- ``` python
35- from gen_surv import generate
34+ # AFT Log-Normal
35+ generate(model = " aft_ln" , n = 100 , beta = [0.5 , - 0.3 ], sigma = 1.0 , model_cens = " exponential" , cens_par = 3.0 )
36+
37+ # CMM
38+ generate(model = " cmm" , n = 100 , model_cens = " exponential" , cens_par = 2.0 ,
39+ qmat = [[0 , 0.1 ], [0.05 , 0 ]], p0 = [1.0 , 0.0 ])
3640
37- df = generate(
38- model = " cphm" ,
39- n = 100 ,
40- model_cens = " uniform" ,
41- cens_par = 1.0 ,
42- beta = 0.5 ,
43- covar = 2.0
44- )
41+ # TDCM
42+ generate(model = " tdcm" , n = 100 , dist = " weibull" , corr = 0.5 ,
43+ dist_par = [1 , 2 , 1 , 2 ], model_cens = " uniform" , cens_par = 1.0 ,
44+ beta = [0.1 , 0.2 , 0.3 ], lam = 1.0 )
4545
46- print (df.head())
46+ # THMM
47+ generate(model = " thmm" , n = 100 , qmat = [[0 , 0.2 , 0 ], [0.1 , 0 , 0.1 ], [0 , 0.3 , 0 ]],
48+ emission_pars = {" mu" : [0.0 , 1.0 , 2.0 ], " sigma" : [0.5 , 0.5 , 0.5 ]},
49+ p0 = [1.0 , 0.0 , 0.0 ], model_cens = " exponential" , cens_par = 3.0 )
4750```
4851
4952## 🔗 Project Links
0 commit comments