|
| 1 | +""" |
| 2 | +Mixture Cure Models for survival data simulation. |
| 3 | +
|
| 4 | +This module provides functions to generate survival data with a cure fraction, |
| 5 | +i.e., a proportion of subjects who are immune to the event of interest. |
| 6 | +""" |
| 7 | + |
| 8 | +import numpy as np |
| 9 | +import pandas as pd |
| 10 | +from typing import Dict, List, Optional, Tuple, Union, Literal |
| 11 | + |
| 12 | + |
| 13 | +def gen_mixture_cure( |
| 14 | + n: int, |
| 15 | + cure_fraction: float, |
| 16 | + baseline_hazard: float = 0.5, |
| 17 | + betas_survival: Optional[List[float]] = None, |
| 18 | + betas_cure: Optional[List[float]] = None, |
| 19 | + n_covariates: int = 2, |
| 20 | + covariate_dist: Literal["normal", "uniform", "binary"] = "normal", |
| 21 | + covariate_params: Optional[Dict[str, Union[float, Tuple[float, float]]]] = None, |
| 22 | + model_cens: Literal["uniform", "exponential"] = "uniform", |
| 23 | + cens_par: float = 5.0, |
| 24 | + max_time: Optional[float] = 10.0, |
| 25 | + seed: Optional[int] = None |
| 26 | +) -> pd.DataFrame: |
| 27 | + """ |
| 28 | + Generate survival data with a cure fraction using a mixture cure model. |
| 29 | + |
| 30 | + Parameters |
| 31 | + ---------- |
| 32 | + n : int |
| 33 | + Number of subjects. |
| 34 | + cure_fraction : float |
| 35 | + Baseline probability of being cured (immune to the event). |
| 36 | + Should be between 0 and 1. |
| 37 | + baseline_hazard : float, default=0.5 |
| 38 | + Baseline hazard rate for the non-cured population. |
| 39 | + betas_survival : list of float, optional |
| 40 | + Coefficients for covariates in the survival component. |
| 41 | + If None, generates random coefficients. |
| 42 | + betas_cure : list of float, optional |
| 43 | + Coefficients for covariates in the cure component. |
| 44 | + If None, generates random coefficients. |
| 45 | + n_covariates : int, default=2 |
| 46 | + Number of covariates to generate if betas is None. |
| 47 | + covariate_dist : {"normal", "uniform", "binary"}, default="normal" |
| 48 | + Distribution to generate covariates from. |
| 49 | + covariate_params : dict, optional |
| 50 | + Parameters for covariate distribution: |
| 51 | + - "normal": {"mean": float, "std": float} |
| 52 | + - "uniform": {"low": float, "high": float} |
| 53 | + - "binary": {"p": float} |
| 54 | + If None, uses defaults based on distribution. |
| 55 | + model_cens : {"uniform", "exponential"}, default="uniform" |
| 56 | + Censoring mechanism. |
| 57 | + cens_par : float, default=5.0 |
| 58 | + Parameter for censoring distribution. |
| 59 | + max_time : float, optional, default=10.0 |
| 60 | + Maximum simulation time. Set to None for no limit. |
| 61 | + seed : int, optional |
| 62 | + Random seed for reproducibility. |
| 63 | + |
| 64 | + Returns |
| 65 | + ------- |
| 66 | + pd.DataFrame |
| 67 | + DataFrame with columns: |
| 68 | + - "id": Subject identifier |
| 69 | + - "time": Time to event or censoring |
| 70 | + - "status": Event indicator (1=event, 0=censored) |
| 71 | + - "cured": Indicator of cure status (1=cured, 0=not cured) |
| 72 | + - "X0", "X1", ...: Covariates |
| 73 | + |
| 74 | + Examples |
| 75 | + -------- |
| 76 | + >>> from gen_surv.mixture import gen_mixture_cure |
| 77 | + >>> |
| 78 | + >>> # Generate data with 30% baseline cure fraction |
| 79 | + >>> df = gen_mixture_cure( |
| 80 | + ... n=100, |
| 81 | + ... cure_fraction=0.3, |
| 82 | + ... betas_survival=[0.8, -0.5], |
| 83 | + ... betas_cure=[-0.5, 0.8], |
| 84 | + ... seed=42 |
| 85 | + ... ) |
| 86 | + >>> |
| 87 | + >>> # Check cure proportion |
| 88 | + >>> print(f"Cured subjects: {df['cured'].mean():.2%}") |
| 89 | + """ |
| 90 | + if seed is not None: |
| 91 | + np.random.seed(seed) |
| 92 | + |
| 93 | + # Validate inputs |
| 94 | + if not 0 <= cure_fraction <= 1: |
| 95 | + raise ValueError("cure_fraction must be between 0 and 1") |
| 96 | + |
| 97 | + if baseline_hazard <= 0: |
| 98 | + raise ValueError("baseline_hazard must be positive") |
| 99 | + |
| 100 | + # Set default covariate parameters if not provided |
| 101 | + if covariate_params is None: |
| 102 | + if covariate_dist == "normal": |
| 103 | + covariate_params = {"mean": 0.0, "std": 1.0} |
| 104 | + elif covariate_dist == "uniform": |
| 105 | + covariate_params = {"low": 0.0, "high": 1.0} |
| 106 | + elif covariate_dist == "binary": |
| 107 | + covariate_params = {"p": 0.5} |
| 108 | + else: |
| 109 | + raise ValueError(f"Unknown covariate distribution: {covariate_dist}") |
| 110 | + |
| 111 | + # Set default betas if not provided |
| 112 | + if betas_survival is None: |
| 113 | + betas_survival = np.random.normal(0, 0.5, size=n_covariates) |
| 114 | + else: |
| 115 | + betas_survival = np.array(betas_survival) |
| 116 | + n_covariates = len(betas_survival) |
| 117 | + |
| 118 | + if betas_cure is None: |
| 119 | + betas_cure = np.random.normal(0, 0.5, size=n_covariates) |
| 120 | + else: |
| 121 | + betas_cure = np.array(betas_cure) |
| 122 | + if len(betas_cure) != n_covariates: |
| 123 | + raise ValueError( |
| 124 | + f"betas_cure must have the same length as betas_survival, " |
| 125 | + f"got {len(betas_cure)} vs {n_covariates}" |
| 126 | + ) |
| 127 | + |
| 128 | + # Generate covariates |
| 129 | + if covariate_dist == "normal": |
| 130 | + X = np.random.normal( |
| 131 | + covariate_params.get("mean", 0.0), |
| 132 | + covariate_params.get("std", 1.0), |
| 133 | + size=(n, n_covariates) |
| 134 | + ) |
| 135 | + elif covariate_dist == "uniform": |
| 136 | + X = np.random.uniform( |
| 137 | + covariate_params.get("low", 0.0), |
| 138 | + covariate_params.get("high", 1.0), |
| 139 | + size=(n, n_covariates) |
| 140 | + ) |
| 141 | + elif covariate_dist == "binary": |
| 142 | + X = np.random.binomial( |
| 143 | + 1, |
| 144 | + covariate_params.get("p", 0.5), |
| 145 | + size=(n, n_covariates) |
| 146 | + ) |
| 147 | + else: |
| 148 | + raise ValueError(f"Unknown covariate distribution: {covariate_dist}") |
| 149 | + |
| 150 | + # Calculate linear predictors |
| 151 | + lp_survival = X @ betas_survival |
| 152 | + lp_cure = X @ betas_cure |
| 153 | + |
| 154 | + # Determine cure status (logistic model) |
| 155 | + cure_probs = 1 / (1 + np.exp(-(np.log(cure_fraction / (1 - cure_fraction)) + lp_cure))) |
| 156 | + cured = np.random.binomial(1, cure_probs) |
| 157 | + |
| 158 | + # Generate survival times |
| 159 | + survival_times = np.zeros(n) |
| 160 | + |
| 161 | + # For non-cured subjects, generate event times |
| 162 | + non_cured_indices = np.where(cured == 0)[0] |
| 163 | + |
| 164 | + for i in non_cured_indices: |
| 165 | + # Adjust hazard rate by covariate effect |
| 166 | + adjusted_hazard = baseline_hazard * np.exp(lp_survival[i]) |
| 167 | + |
| 168 | + # Generate exponential survival time |
| 169 | + survival_times[i] = np.random.exponential(scale=1/adjusted_hazard) |
| 170 | + |
| 171 | + # For cured subjects, set "infinite" survival time |
| 172 | + cured_indices = np.where(cured == 1)[0] |
| 173 | + if max_time is not None: |
| 174 | + survival_times[cured_indices] = max_time * 100 # Effectively infinite |
| 175 | + else: |
| 176 | + survival_times[cured_indices] = np.inf # Actually infinite |
| 177 | + |
| 178 | + # Generate censoring times |
| 179 | + if model_cens == "uniform": |
| 180 | + cens_times = np.random.uniform(0, cens_par, size=n) |
| 181 | + elif model_cens == "exponential": |
| 182 | + cens_times = np.random.exponential(scale=cens_par, size=n) |
| 183 | + else: |
| 184 | + raise ValueError("model_cens must be 'uniform' or 'exponential'") |
| 185 | + |
| 186 | + # Determine observed time and status |
| 187 | + observed_times = np.minimum(survival_times, cens_times) |
| 188 | + status = (survival_times <= cens_times).astype(int) |
| 189 | + |
| 190 | + # Cap times at max_time if specified |
| 191 | + if max_time is not None: |
| 192 | + over_max = observed_times > max_time |
| 193 | + observed_times[over_max] = max_time |
| 194 | + status[over_max] = 0 # Censored if beyond max_time |
| 195 | + |
| 196 | + # Create DataFrame |
| 197 | + data = pd.DataFrame({ |
| 198 | + "id": np.arange(n), |
| 199 | + "time": observed_times, |
| 200 | + "status": status, |
| 201 | + "cured": cured |
| 202 | + }) |
| 203 | + |
| 204 | + # Add covariates |
| 205 | + for j in range(n_covariates): |
| 206 | + data[f"X{j}"] = X[:, j] |
| 207 | + |
| 208 | + return data |
| 209 | + |
| 210 | + |
| 211 | +def cure_fraction_estimate( |
| 212 | + data: pd.DataFrame, |
| 213 | + time_col: str = "time", |
| 214 | + status_col: str = "status", |
| 215 | + bandwidth: float = 0.1 |
| 216 | +) -> float: |
| 217 | + """ |
| 218 | + Estimate the cure fraction from observed data using non-parametric methods. |
| 219 | + |
| 220 | + Parameters |
| 221 | + ---------- |
| 222 | + data : pd.DataFrame |
| 223 | + DataFrame with survival data. |
| 224 | + time_col : str, default="time" |
| 225 | + Name of the time column. |
| 226 | + status_col : str, default="status" |
| 227 | + Name of the status column (1=event, 0=censored). |
| 228 | + bandwidth : float, default=0.1 |
| 229 | + Bandwidth parameter for smoothing the tail of the survival curve. |
| 230 | + |
| 231 | + Returns |
| 232 | + ------- |
| 233 | + float |
| 234 | + Estimated cure fraction. |
| 235 | + |
| 236 | + Notes |
| 237 | + ----- |
| 238 | + This function uses a non-parametric approach to estimate the cure fraction |
| 239 | + based on the plateau of the survival curve. It may not be accurate for |
| 240 | + small sample sizes or heavy censoring. |
| 241 | + """ |
| 242 | + # Sort data by time |
| 243 | + sorted_data = data.sort_values(by=time_col).copy() |
| 244 | + |
| 245 | + # Calculate Kaplan-Meier estimate |
| 246 | + times = sorted_data[time_col].values |
| 247 | + status = sorted_data[status_col].values |
| 248 | + n = len(times) |
| 249 | + |
| 250 | + if n == 0: |
| 251 | + return 0.0 |
| 252 | + |
| 253 | + # Calculate survival function |
| 254 | + survival = np.ones(n) |
| 255 | + |
| 256 | + for i in range(n): |
| 257 | + if i > 0: |
| 258 | + survival[i] = survival[i-1] |
| 259 | + |
| 260 | + # Count subjects at risk at this time |
| 261 | + at_risk = n - i |
| 262 | + |
| 263 | + if status[i] == 1: # Event |
| 264 | + survival[i] *= (1 - 1/at_risk) |
| 265 | + |
| 266 | + # Estimate cure fraction as the plateau of the survival curve |
| 267 | + # Use the last 10% of the survival curve if enough data points |
| 268 | + tail_size = max(int(n * 0.1), 1) |
| 269 | + tail_survival = survival[-tail_size:] |
| 270 | + |
| 271 | + # Apply smoothing if there are enough data points |
| 272 | + if tail_size > 3: |
| 273 | + # Use kernel smoothing |
| 274 | + weights = np.exp(-(np.arange(tail_size) - tail_size + 1)**2 / (2 * bandwidth * tail_size)**2) |
| 275 | + weights = weights / weights.sum() |
| 276 | + cure_fraction = np.sum(tail_survival * weights) |
| 277 | + else: |
| 278 | + # Just use the last survival probability |
| 279 | + cure_fraction = survival[-1] |
| 280 | + |
| 281 | + return cure_fraction |
0 commit comments