-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_memory.py
503 lines (393 loc) · 18.5 KB
/
train_memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import os
import argparse
import time
import apex
import logging
import torch
import time
import numpy as np
import torch.nn as nn
from tqdm import tqdm
import torch.multiprocessing
import torch.distributed as dist
from models.sync_batchnorm.replicate import patch_replication_callback
from utils.lr_scheduler import LR_Scheduler
from utils.saver import Saver
from utils.metrics import Evaluator
import scipy.io as scio
def get_logger(save_path):
logger_name = "main-logger"
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
fh = logging.FileHandler(os.path.join(save_path, 'log.txt'))
log_format = '%(asctime)s %(message)s'
fh.setFormatter(logging.Formatter(log_format))
logger.addHandler(fh)
handler = logging.StreamHandler()
fmt = "[%(asctime)s %(levelname)s %(filename)s line %(lineno)d %(process)d] %(message)s"
handler.setFormatter(logging.Formatter(fmt))
logger.addHandler(handler)
return logger
def main_process(args):
return not args.distributed == 'True' or (args.distributed == 'True' and args.rank % args.world_size == 0)
class all_loss(nn.Module):
def __init__(self):
super().__init__()
# ce
self.criterion_1 = nn.CrossEntropyLoss(ignore_index=255)
self.criterion_2 = nn.CrossEntropyLoss(ignore_index=255)
def forward(self, output, target):
if len(output) == 2:
output_1, output_2 = output
target = target.cuda(non_blocking=True).long()
loss1 = self.criterion_1(output_1, target)
loss2 = self.criterion_2(output_2, target)
# loss = loss1 + 0.4*loss2
return loss1, loss2
else:
output_1 = output
target = target.cuda(non_blocking=True).long()
loss1 = self.criterion_1(output_1, target)
loss = loss1
return loss
class Trainer(object):
def __init__(self, args, LOCAL_RANK=0):
self.args = args
# Define Saver
if main_process(args):
self.saver = Saver(args)
self.saver.save_experiment_config()
self.logger = get_logger(self.saver.experiment_dir)
# print args
if main_process(args):
self.logger.info(args)
# Define Dataloader
if 'WHUHi' in self.args.dataset:
from dataloaders.datasets.WHU_Hi import make_data_loader
self.train_loader, self.val_loader = make_data_loader(args)
else:
raise NotImplementedError
if 'WHUHi' in self.args.dataset:
in_channels = 3
else:
in_channels = 3
if 'LongKou' in self.args.dataset:
classes = 9
elif 'HanChuan' in self.args.dataset:
classes = 16
elif 'HongHu' in self.args.dataset:
classes = 22
else:
raise NotImplementedError
# Define model
from models.network_local_global import rat_model
model = rat_model(args, classes, in_channels)
train_params = [{'params': model.get_1x_lr_params(), 'lr': args.lr},
{'params': model.get_10x_lr_params(), 'lr': args.lr*10}]
model.cuda()
# Define Optimizer
optimizer = torch.optim.SGD(train_params, lr=args.lr, momentum=args.momentum,
weight_decay=args.weight_decay, nesterov=args.nesterov)
#optimizer = torch.optim.Adam(train_params,weight_decay=args.weight_decay)
# Define Criterion
self.criterion = all_loss()
# Define Evaluator
self.evaluator = Evaluator(classes)
# Define lr scheduler
self.scheduler = LR_Scheduler(self.args, args.lr_scheduler, args.lr,
args.epochs, len(self.train_loader))
# Define accuracy
if 'WHUHi' in self.args.dataset:
self.val_vote_acc = []
self.evaluator_vote = Evaluator(classes)
else:
self.val_vote_acc = None
# Define train form
if args.distributed == 'True':
if args.use_apex == 'True': # nvidia 的 apex
model = apex.parallel.convert_syncbn_model(model)
model, optimizer = apex.amp.initialize(model, optimizer, opt_level=args.opt_level)
model = apex.parallel.DistributedDataParallel(model)
if main_process(args):
self.logger.info("Implementing distributed hybrid training!")
else: # pytorch official
model = torch.nn.parallel.DistributedDataParallel(model.cuda(), device_ids=[LOCAL_RANK],find_unused_parameters=True)
if main_process(args):
self.logger.info("Implementing distributed training!")
else:
if args.use_apex == 'True': # nvidia 的 apex
model = apex.parallel.convert_syncbn_model(model)
model, optimizer = apex.amp.initialize(model, optimizer, opt_level=args.opt_level)
if main_process(args):
self.logger.info("Implementing parallel hybrid training!")
model = torch.nn.DataParallel(model.cuda()) # 普通的单机多卡
patch_replication_callback(model)
if main_process(args):
self.logger.info("Implementing parallel training!")
self.model, self.optimizer = model, optimizer
# Resuming checkpoint
self.best_pred = 0.0
if args.ft=='True':
if not os.path.isfile(args.resume):
if main_process(args):
raise RuntimeError("=> no checkpoint found at '{}'".format(args.resume))
else:
if main_process(args):
self.logger.info("=> loading ft model...")
checkpoint = torch.load(args.resume, map_location='cpu')
ckpt_dict = checkpoint['state_dict']
model_dict = {}
state_dict = model.state_dict()
for k, v in ckpt_dict.items():
if k in state_dict:
model_dict[k] = v
state_dict.update(model_dict)
if args.distributed=='True':
self.model.load_state_dict(state_dict)
else:
self.model.module.load_state_dict(state_dict)
self.optimizer.load_state_dict(checkpoint['optimizer'])
# self.best_pred = checkpoint['best_pred']
if main_process(args):
self.logger.info("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
# Clear start epoch if fine-tuning
if args.ft == 'True':
self.args.start_epoch = 0
def training(self, epoch, args, trn_loss):
epoch_loss = 0.0
start_time = time.time()
self.model.train()
tbar = tqdm(self.train_loader)
for i, sample in enumerate(tbar):
image = sample['image']
target = sample['label']
image = image.cuda(non_blocking=True)
self.scheduler(self.optimizer, i, epoch, self.best_pred)
output = self.model(image)
loss1, loss2 = self.criterion(output, target)
loss = loss1 + 0.4*loss2
reduced_loss = loss.data.clone()
trn_loss.append(loss1.item())
if self.args.distributed == 'True':
reduced_loss = reduced_loss / args.world_size
dist.all_reduce_multigpu([reduced_loss])
self.optimizer.zero_grad()
epoch_loss += loss.item()
if self.args.use_apex == 'True':
with apex.amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
nn.utils.clip_grad_norm_(parameters=self.model.parameters(), max_norm=20, norm_type=2)
self.optimizer.step()
if main_process(self.args):
tbar.set_description('Training batch: %d' % (i + 1))
tbar.set_postfix(Loss=epoch_loss / (i + 1))
end_time = time.time()
if main_process(self.args):
self.logger.info('Training epoch [{}/{}]: Loss: {:.4f}. Cost {:.4f} secs'.format(epoch+1, self.args.epochs, epoch_loss*1.0/(i+1),end_time-start_time))
return trn_loss
def validation(self, epoch, val_loss, isbest=True):
if main_process(self.args):
self.logger.info('>>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>')
self.model.eval()
self.evaluator.reset()
if 'WHUHi' in self.args.dataset:
vote_prob = 0
if 'WHUHi' in self.args.dataset and self.args.mode == 'hard':
preds = []
tbar = tqdm(self.val_loader, desc='\r')
for i, sample in enumerate(tbar):
image = sample['image']
target = sample['label']
image = image.cuda(non_blocking=True)
with torch.no_grad():
output = self.model(image)
loss = self.criterion(output, target)
val_loss.append(loss.item())
if main_process(self.args):
tbar.set_description('Validation batch: %d' % (epoch))
if 'WHUHi' in self.args.dataset and self.args.mode == 'hard':
preds.append(output.cpu().numpy().argmax(axis=1)) # b, h, w
if 'WHUHi' in self.args.dataset and self.args.mode == 'soft':
vote_prob += output.cpu().numpy() # 1,c,h,w
if 'WHUHi' in self.args.dataset and self.args.mode == 'hard':
preds = np.concatenate(preds, axis=0).astype('int') # B, h, w
_, h, w = preds.shape
vote_pred = np.zeros([1, h, w]).astype('int')
for ii in range(h):
for jj in range(w):
vote_pred[0, ii, jj] = np.argmax(np.bincount(preds[:,ii,jj]))
if 'WHUHi' in self.args.dataset and self.args.mode == 'soft':
vote_pred = np.argmax(vote_prob, axis=1) # 1,h,w
target = target.cpu().numpy() # batch_size * 256 * 256
self.evaluator.add_batch(target, vote_pred)
if 'WHUHi' in self.args.dataset:
OA = self.evaluator.Pixel_Accuracy()
mIOU, IOU = self.evaluator.Mean_Intersection_over_Union()
mAcc, Acc = self.evaluator.Pixel_Accuracy_Class()
Kappa = self.evaluator.Kappa()
self.val_vote_acc.append(OA)
if main_process(self.args):
self.logger.info('[Val Vote: OA: %.4f]' % (OA))
if main_process(self.args):
self.logger.info('[Epoch: %d, Val OA: %.4f, mIOU: %.4f, mAcc: %.4f, Kappa: %.4f]' % (
epoch, OA, mIOU, mAcc, Kappa))
if 'WHUHi' in self.args.dataset:
new_pred = OA
else:
raise NotImplementedError
if (new_pred > self.best_pred and isbest==True) or isbest==False:
self.best_pred = new_pred
if self.args.distributed=='True':
self.saver.save_checkpoint({
'epoch': epoch + 1,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
}, val_vote_acc=self.val_vote_acc,is_best=isbest)
else:
self.saver.save_checkpoint({
'epoch': epoch + 1,
'state_dict': self.model.module.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
}, val_vote_acc=self.val_vote_acc ,is_best=isbest)
return val_loss
def main():
parser = argparse.ArgumentParser(description="Gaofen Challenge Training")
'''
Model
'''
parser.add_argument('--backbone', type=str, default='resnet18',
choices=['resnet18','resnet50', 'vgg16', 'hrnet18', 'vitaev2_s','mobilenetv2','swint'],
help='backbone name')
'''
Dataset
'''
## WHUHi + district + channel + sample
## eg: WHUHi_LongKou_10_100
parser.add_argument('--dataset', type=str, default=None,help='dataset name')
parser.add_argument('--workers', type=int, default=0,
metavar='N', help='dataloader threads')
parser.add_argument('--base-size', type=int, default=256,
help='base image size')
parser.add_argument('--crop-size', type=int, default=256,
help='crop image size')
'''
Hyper Parameters
'''
parser.add_argument('--epochs', type=int, default=120,
help='number of epochs to train')
parser.add_argument('--start_epoch', type=int, default=0,
metavar='N', help='start epochs (default:0)')
parser.add_argument('--batch_size', type=int, default=8,
metavar='N', help='input batch size for \
training (default: auto)')
parser.add_argument('--test_batch_size', type=int, default=1,
metavar='N', help='input batch size for \
testing (default: auto)')
parser.add_argument('--groups', type=int, default=120,
help='number of regions')
parser.add_argument('--ra_head_num', type=int, default=None,
help='number of regions')
parser.add_argument('--ga_head_num', type=int, default=None,
help='number of regions')
'''
Optimizer
'''
parser.add_argument('--lr', type=float, default=1e-3, metavar='LR',
help='learning rate (default: 1e-3)')
parser.add_argument('--lr-scheduler', type=str, default='poly',
choices=['poly', 'step', 'cos'],
help='lr scheduler mode: (default: poly)')
parser.add_argument('--momentum', type=float, default=0.9,
metavar='M', help='momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=1e-4,
metavar='M', help='w-decay (default: 5e-4)')
parser.add_argument('--nesterov', action='store_true', default=False,
help='whether use nesterov (default: False)')
'''
Fine-tune
'''
parser.add_argument('--ft', type=str, default='False',
choices=['True', 'False'],
help='finetuning on a different dataset')
parser.add_argument('--resume', type=str, default=None,
help='put the path to resuming file if needed')
parser.add_argument('--freeze_bn', action='store_true', default=False,
help='whether freeze bn while finetuning')
parser.add_argument('--freeze_backbone', action='store_true', default=False,
help='whether freeze backbone while finetuning')
'''
Evaluation
'''
parser.add_argument('--eval_interval', type=int, default=1,
help='evaluuation interval (default: 1)')
parser.add_argument('--no-val', action='store_true', default=False,
help='skip validation during training')
'''
Others
'''
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
'''
apex
'''
parser.add_argument('--use_apex', type=str, default='False',
choices=['True', 'False'], help='use apex')
parser.add_argument('--opt_level', type=str, default='O0',
choices=['O0', 'O1', 'O2', 'O3'], help='hybrid training')
'''
distributed
'''
parser.add_argument('--distributed', type=str, default='True',
choices=['True', 'False'], help='distributed training')
parser.add_argument('--local_rank', type=int, default=0)
'''
mode
'''
parser.add_argument('--mode', type=str, default='soft',
choices=['soft', 'hard'], help='voting mode')
args = parser.parse_args()
if args.test_batch_size is None:
args.test_batch_size = args.batch_size
torch.manual_seed(args.seed)
np.random.seed(args.seed)
torch.cuda.manual_seed(args.seed)
if args.distributed == 'True':
#args.world_size = int(os.environ['SLURM_NTASKS'])
args.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
#args.rank = int(os.environ['SLURM_PROCID'])
args.rank = int(os.environ["RANK"])
#LOCAL_RANK = int(os.environ['SLURM_LOCALID'])
LOCAL_RANK = int(os.environ['LOCAL_RANK']) #args.rank % torch.cuda.device_count()
dist.init_process_group(backend='nccl', init_method='env://', world_size=args.world_size, rank=args.rank)#分布式TCP初始化
torch.cuda.set_device(LOCAL_RANK) # 设置节点等级为GPU数
trainer = Trainer(args,LOCAL_RANK)
else:
trainer = Trainer(args)
trn_loss = []
val_loss = []
trn_time = 0
for epoch in range(trainer.args.start_epoch, trainer.args.epochs):
trn_time1 = time.time()
trn_loss = trainer.training(epoch, args, trn_loss)
trn_time2 = time.time()
if not trainer.args.no_val and epoch % args.eval_interval == 0:
val_loss = trainer.validation(epoch, val_loss)
trn_time = trn_time + trn_time2 - trn_time1
scio.savemat(os.path.join(trainer.saver.experiment_dir,'trn_loss_iters_{}_{}_loss1.mat'.format(args.dataset,args.mode)),{'data': trn_loss})
scio.savemat(os.path.join(trainer.saver.experiment_dir,'val_loss_epochs_{}_{}_loss1.mat'.format(args.dataset,args.mode)),{'data': val_loss})
val_acc = trainer.val_vote_acc
scio.savemat(os.path.join(trainer.saver.experiment_dir,'val_acc_epochs_{}_{}.mat'.format(args.dataset,args.mode)),{'data': val_acc})
val_acc = np.array(val_acc)
tes_time1 = time.time()
trainer.validation(epoch, val_loss, isbest=False)
tes_time2 = time.time()
tes_time = tes_time2 - tes_time1
trainer.logger.info('[Trn time: %.4f]' % (trn_time))
trainer.logger.info('[Tes time: %.4f]' % (tes_time))
if __name__ == '__main__':
main()