diff --git a/TENSORBOX/utils/kaffe/network.py b/TENSORBOX/utils/kaffe/network.py index cbfae9c8..66e7fe62 100755 --- a/TENSORBOX/utils/kaffe/network.py +++ b/TENSORBOX/utils/kaffe/network.py @@ -2,6 +2,8 @@ import tensorflow as tf DEFAULT_PADDING = 'SAME' +tf_major_ver = int(tf.__version__.split(".")[0]) +tf_minor_ver = int(tf.__version__.split(".")[1]) def layer(op): def layer_decorated(self, *args, **kwargs): @@ -88,7 +90,10 @@ def conv(self, input, k_h, k_w, c_o, s_h, s_w, name, relu=True, padding=DEFAULT_ input_groups = tf.split(3, group, input) kernel_groups = tf.split(3, group, kernel) output_groups = [convolve(i, k) for i,k in zip(input_groups, kernel_groups)] - conv = tf.concat(3, output_groups) + if(tf_major_ver==0): + conv = tf.concat(3, output_groups) + else: + conv = tf.concat(output_groups,3) if relu: bias = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape().as_list()) return tf.nn.relu(bias, name=scope.name) @@ -127,7 +132,10 @@ def lrn(self, input, radius, alpha, beta, name, bias=1.0): @layer def concat(self, inputs, axis, name): - return tf.concat(concat_dim=axis, values=inputs, name=name) + if(tf_major_ver==0): + return tf.concat(concat_dim=axis, values=inputs, name=name) + else: + return tf.concat(axis=axis, values=inputs, name=name) @layer def fc(self, input, num_out, name, relu=True):