|
129 | 129 |
|
130 | 130 | % hy figs-methods.hy write-slmmir-script |
131 | 131 | % bash run-slmmir-on-basis-lines.sh > slmmir-on-basis-lines-2.txt |
132 | | -% hy figs-methods.hy plot-slmmir-vs-heuristic # uses slmmir-on-basis-lines-2.txt |
133 | | -\begin{figure}[tbh] |
| 132 | +% hy figs-methods.hy plot-slmmir-vs-heuristic-ab # uses slmmir-on-basis-lines-2.txt |
| 133 | +\begin{figure}[tb] |
134 | 134 | \centering |
135 | | - \includegraphics[width=0.48\linewidth]{slmmir-vs-heuristic-gau-nopp-l2} |
136 | | - \caption{$l_2$ norm on the nondivergent flow problem |
| 135 | + \includegraphics[width=1\linewidth]{slmmir-vs-heuristic-ab} |
| 136 | + \caption{$l_2$ errors for the nondivergent flow problem |
137 | 137 | using basis $\basisns_{\np}$ vs.~$a_2(\basisns_{\np})$, |
138 | 138 | for a large number of \abtps~bases and $\np=6$ to $10$. |
139 | | - The legend lists the marker type for each $\np$. |
140 | | - Large red circles outline the bases in Table \ref{tbl:gll}. |
141 | | - The configuration uses the Gaussian hills IC and no property preservation.} |
142 | | - \label{fig:slmmir-vs-heuristic-a} |
143 | | -\end{figure} |
144 | | -\begin{figure}[tbh] |
145 | | - \centering |
146 | | - \includegraphics[width=0.48\linewidth]{slmmir-vs-heuristic-cos-pp-l2} |
147 | | - \caption{Same as Fig.~\ref{fig:slmmir-vs-heuristic-a} except that the configuration |
148 | | - uses the cosine bells IC with property preservation.} |
149 | | - \label{fig:slmmir-vs-heuristic-b} |
| 139 | + The legends list the marker type for each $\np$. |
| 140 | + Large red circles outline the points corresponding to the bases in Table \ref{tbl:gll}. |
| 141 | + (a) With the Gaussian hills IC and no property preservation. |
| 142 | + (b) With the cosine bells IC and property preservation.} |
| 143 | + \label{fig:slmmir-vs-heuristic} |
150 | 144 | \end{figure} |
151 | 145 |
|
152 | 146 | % hy figs-adv-diag.hy figs-acc acc-0.txt |
|
374 | 368 | } |
375 | 369 | \label{fig:summit-perf} |
376 | 370 | \end{figure} |
| 371 | + |
| 372 | +% hy figs-methods.hy cubed-sphere-subelem-grid-schematic |
| 373 | +\begin{figure}[tb] |
| 374 | + \centering |
| 375 | + \includegraphics[width=0.5\linewidth]{cubed-sphere-subelem-grid-schematic} |
| 376 | + \caption{ |
| 377 | + Cubed-sphere grid (black lines in foreground, gray lines in background) |
| 378 | + with $\neface\!\times\!\neface$ spectral elements per cube face; |
| 379 | + $\neface=2$ in this example. |
| 380 | + The green dashed line outlines the sphere's projection onto the two-dimensional plane of the figure. |
| 381 | + The upper-right element of the front cubed-sphere face shows the subelement tensor-product Gauss--Lobatto--Legendre (GLL) grid points. |
| 382 | + In this example, the dynamics solver's subelement grid uses $\npv=4$ (large blue circles) GLL points per dimension, |
| 383 | + and the transport solver's subelement grid uses $\npt=6$ (small red circles). |
| 384 | + } |
| 385 | + \label{fig:cubed-sphere-subelem-grid-schematic} |
| 386 | +\end{figure} |
| 387 | + |
| 388 | +% hy figs-methods.hy isl-1d-schematic |
| 389 | +\begin{figure}[tb] |
| 390 | + \centering |
| 391 | + \includegraphics[width=1\linewidth]{isl-1d-schematic} |
| 392 | + \caption{ |
| 393 | + Illustration of the classical and element-based interpolation semi-Lagrangian methods. |
| 394 | + See the discussion in Sect.~\ref{sec:setting:sl}. |
| 395 | + } |
| 396 | + \label{fig:isl-1d-schematic} |
| 397 | +\end{figure} |
| 398 | + |
| 399 | +% hy figs-methods.hy matrix-schematic |
| 400 | +\begin{figure}[tb] |
| 401 | + \centering |
| 402 | + \includegraphics[width=0.5\linewidth]{matrix-schematic} |
| 403 | + \caption{ |
| 404 | + Correspondence between the ISL space--time operator $\mat{A}$ (top) |
| 405 | + and the target and source one-dimensional grids (bottom) |
| 406 | + for one time step of the test problem. |
| 407 | + In the matrix $\mat{A}$, of which the upper-left corner is pictured, |
| 408 | + numbered columns correspond to source-grid degrees of freedom (DOF), |
| 409 | + and numbered rows correspond to target-grid DOF. |
| 410 | + Nonzeros occur in the red rectangular blocks $\mat{B} \equiv (\mat{\bar{B}} \ \vec{b})$. |
| 411 | + In this example, the target grid (green dashed line) is advected backward in time |
| 412 | + so that one subelement grid point moves one element to the left; |
| 413 | + in the resulting matrix $\mat{A}$, the blocks are shifted one row down. |
| 414 | + } |
| 415 | + \label{fig:matrix-schematic} |
| 416 | +\end{figure} |
| 417 | + |
| 418 | +% bash run-instab-imgs.sh |
| 419 | +% hy figs-adv-diag.hy fig-instab |
| 420 | +\begin{figure}[tb] |
| 421 | + \centering |
| 422 | + \includegraphics[width=0.75\linewidth]{img-instab} |
| 423 | + \caption{ |
| 424 | + Images for unstable (top) and stable (bottom) ISL transport. |
| 425 | + The problem is nondivergent flow with the slotted cylinders IC, |
| 426 | + with $\neface = 20$, $\npv = \npt = 6$, and the large time step. |
| 427 | + The snapshot is at the end of day 11 of the first cycle; |
| 428 | + the images are zoomed to just the region containing the slotted cylinders. |
| 429 | + The color range is [-0.05, 1.15], |
| 430 | + which clips the top-left image's range of [-30.4, 32.7]. |
| 431 | + The bases are GLL (top) and Islet (bottom), |
| 432 | + without (left) and with (right) property preservation. |
| 433 | + The GLL basis yields an unstable ISL method. |
| 434 | + Although a nonlinear property preservation step makes the method stable, |
| 435 | + the linear advection operator's instability still manifests as spurious oscillations. |
| 436 | + The Islet basis yields a stabilized ISL method; |
| 437 | + the nonlinear property preservation step now just controls mass conservation and extrema, |
| 438 | + as intended. |
| 439 | + } |
| 440 | + \label{fig:islet-vs-gll-img} |
| 441 | +\end{figure} |
0 commit comments