You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
where `KDisp` is the number of `k` levels you want to displace each specific volume level to.
53
53
For example, to displace each level to one below, set `KDisp = 1`.
54
54
55
-
## Removal of Eos
55
+
## Bounds check (and truncation) for the state variables (under Teos-10)
56
+
57
+
The implemented 75-term polynomial for the calculation of the specific volume under Teos-10 is considered valid for ocean states contained in the ''oceanographic funnel'' defined in [McDougall et al., 2003](https://journals.ametsoc.org/view/journals/atot/20/5/1520-0426_2003_20_730_aaceaf_2_0_co_2.xml). When using teos-10, the Eos uses member methods `calcSLimits(P)` and `calcTLimits(Sa, P)` to calculate the valid ranges of Sa and T given the pressure. The conservative temperature lower bound depends is set by the freezing temperature, using the member method `calcCtFreezing(Sa, P, SaturationFract)`. This method implements the polynomial approximation of the conservative freezing temperature (called `gsw_ct_freezing_poly` in the GSW package), which is known to produce erros in the (-5e-4 K, 6e-4 K) range. Once we calculate the upper and lower bounds of validity, the state variables are clipped to the valid range (if outside the bounds) before we run the specific volume calculation. The state fields themselves are not changed.
Copy file name to clipboardExpand all lines: components/omega/doc/userGuide/EOS.md
+2Lines changed: 2 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -20,3 +20,5 @@ Eos:
20
20
where `DRhoDT` is the thermal expansion coefficient ($\textrm{kg}/(\textrm{m}^3 \cdot ^{\circ}\textrm{C})$), `DRhoDS` is the saline contraction coefficient ($\textrm{kg}/\textrm{m}^3$), and `RhoT0S0` is the reference density at (T,S)=(0,0) (in $\textrm{kg}/\textrm{m}^3$).
21
21
22
22
In addition to `SpecVol`, the displaced specific volume `SpecVolDisplaced` is also calculated by the EOS. This calculates the density of a parcel of fluid that is adiabatically displaced by a relative `k` levels, capturing the effects of pressure/depth changes. This is primarily used to calculate quantities for determining the water column stability (i.e. the stratification) and the vertical mixing coefficients (viscosity and diffusivity). Note: when using the linear EOS, `SpecVolDisplaced` will be the same as `SpecVol` since the specific volume calculation is independent of pressure/depth.
23
+
24
+
When using `Teos-10`, the state variables are checked against the range over which the polynomial is considered to be valid (see [Roquet et al. 2015](https://www.sciencedirect.com/science/article/pii/S1463500315000566)). If the values are outside of the accepted values, we use the valid bounds for the specific volume calculation. Note that the state variable values themselves are not modified, only that they are not used as is in the calculation.
0 commit comments