Skip to content

Commit 469cebb

Browse files
committed
Remove inadvertant rebase diffs
1 parent 090b25e commit 469cebb

File tree

10 files changed

+1
-2172
lines changed

10 files changed

+1
-2172
lines changed

auxiliary_tools/template_cdat_regression_test.ipynb

Lines changed: 0 additions & 1333 deletions
This file was deleted.

e3sm_diags/driver/qbo_driver.py

Lines changed: 0 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -8,10 +8,7 @@
88
import scipy.fftpack
99
import xarray as xr
1010
import xcdat as xc
11-
<<<<<<< HEAD
1211
from scipy.signal import detrend
13-
=======
14-
>>>>>>> c7ef34e9 (CDAT Migration Phase 2: Refactor `qbo` set (#826))
1512

1613
from e3sm_diags.driver.utils.dataset_xr import Dataset
1714
from e3sm_diags.driver.utils.io import _get_output_dir, _write_to_netcdf
@@ -29,12 +26,9 @@
2926
# The region will always be 5S5N
3027
REGION = "5S5N"
3128

32-
<<<<<<< HEAD
3329
# Target power spectral vertical level for the wavelet diagnostic.
3430
POW_SPEC_LEV = 20.0
3531

36-
=======
37-
>>>>>>> c7ef34e9 (CDAT Migration Phase 2: Refactor `qbo` set (#826))
3832

3933
class MetricsDict(TypedDict):
4034
qbo: xr.DataArray
@@ -43,11 +37,8 @@ class MetricsDict(TypedDict):
4337
period_new: np.ndarray
4438
psd_x_new: np.ndarray
4539
amplitude_new: np.ndarray
46-
<<<<<<< HEAD
4740
wave_period: np.ndarray
4841
wavelet: np.ndarray
49-
=======
50-
>>>>>>> c7ef34e9 (CDAT Migration Phase 2: Refactor `qbo` set (#826))
5142
name: str
5243

5344

@@ -105,7 +96,6 @@ def run_diag(parameter: QboParameter) -> QboParameter:
10596
x_ref, ref_dict["period_new"]
10697
)
10798

108-
<<<<<<< HEAD
10999
# Diagnostic 4: calculate the Wavelet
110100
test_dict["wave_period"], test_dict["wavelet"] = _calculate_wavelet(
111101
test_dict["qbo"]
@@ -114,8 +104,6 @@ def run_diag(parameter: QboParameter) -> QboParameter:
114104
ref_dict["qbo"]
115105
)
116106

117-
=======
118-
>>>>>>> c7ef34e9 (CDAT Migration Phase 2: Refactor `qbo` set (#826))
119107
parameter.var_id = var_key
120108
parameter.output_file = "qbo_diags"
121109
parameter.main_title = (
@@ -135,15 +123,7 @@ def run_diag(parameter: QboParameter) -> QboParameter:
135123

136124
# Write the metrics to .json files.
137125
test_dict["name"] = test_ds._get_test_name()
138-
<<<<<<< HEAD
139126
ref_dict["name"] = ref_ds._get_ref_name()
140-
=======
141-
142-
try:
143-
ref_dict["name"] = ref_ds._get_ref_name()
144-
except AttributeError:
145-
ref_dict["name"] = parameter.ref_name
146-
>>>>>>> c7ef34e9 (CDAT Migration Phase 2: Refactor `qbo` set (#826))
147127

148128
_save_metrics_to_json(parameter, test_dict, "test") # type: ignore
149129
_save_metrics_to_json(parameter, ref_dict, "ref") # type: ignore
@@ -172,11 +152,7 @@ def _save_metrics_to_json(
172152
metrics_dict[key] = metrics_dict[key].tolist() # type: ignore
173153

174154
with open(abs_path, "w") as outfile:
175-
<<<<<<< HEAD
176155
json.dump(metrics_dict, outfile, default=str)
177-
=======
178-
json.dump(metrics_dict, outfile)
179-
>>>>>>> c7ef34e9 (CDAT Migration Phase 2: Refactor `qbo` set (#826))
180156

181157
logger.info("Metrics saved in: {}".format(abs_path))
182158

@@ -379,7 +355,6 @@ def deseason(xraw):
379355
# i.e., get the difference between this month's value and it's "usual" value
380356
x_deseasoned[month_index] = xraw[month_index] - xclim[month]
381357
return x_deseasoned
382-
<<<<<<< HEAD
383358

384359

385360
def _calculate_wavelet(var: xr.DataArray) -> Tuple[np.ndarray, np.ndarray]:
@@ -444,5 +419,3 @@ def _get_psd_from_wavelet(data: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
444419
psd = np.mean(np.square(np.abs(cwtmatr)), axis=1)
445420

446421
return (period, psd)
447-
=======
448-
>>>>>>> c7ef34e9 (CDAT Migration Phase 2: Refactor `qbo` set (#826))

e3sm_diags/driver/utils/dataset_xr.py

Lines changed: 1 addition & 53 deletions
Original file line numberDiff line numberDiff line change
@@ -316,15 +316,6 @@ def _get_ref_name(self, default_name: str | None = None) -> str:
316316

317317
return self.parameter.ref_name
318318

319-
<<<<<<< HEAD
320-
=======
321-
raise AttributeError(
322-
"Either `parameter.short_ref_name`, `parameter.reference_name`, or "
323-
"`parameter.ref_name` must be set to get the name and years attribute for "
324-
"reference datasets."
325-
)
326-
327-
>>>>>>> c7ef34e9 (CDAT Migration Phase 2: Refactor `qbo` set (#826))
328319
def _get_global_attr_from_climo_dataset(
329320
self, attr: str, season: ClimoFreq
330321
) -> str | None:
@@ -444,7 +435,6 @@ def _get_climo_dataset(self, season: str) -> xr.Dataset:
444435
)
445436

446437
ds = squeeze_time_dim(ds)
447-
<<<<<<< HEAD
448438
ds = self._subset_vars_and_load(ds, self.var)
449439

450440
return ds
@@ -475,9 +465,6 @@ def _add_cf_attrs_to_z_axes(self, ds: xr.Dataset) -> xr.Dataset:
475465

476466
if axis_attr is None:
477467
ds[dim].attrs["axis"] = "Z"
478-
=======
479-
ds = self._subset_vars_and_load(ds)
480-
>>>>>>> c7ef34e9 (CDAT Migration Phase 2: Refactor `qbo` set (#826))
481468

482469
return ds
483470

@@ -763,7 +750,7 @@ def _get_dataset_with_derived_climo_var(self, ds: xr.Dataset) -> xr.Dataset:
763750
return ds
764751

765752
raise IOError(
766-
f"Neither does {target_var}, nor the variables in {list(target_var_map.keys())} exist in the dataset file."
753+
f"The dataset file has no matching source variables for {target_var}"
767754
)
768755

769756
def _get_matching_climo_src_vars(
@@ -815,45 +802,6 @@ def _get_matching_climo_src_vars(
815802

816803
return None
817804

818-
def _subset_vars_and_load(self, ds: xr.Dataset) -> xr.Dataset:
819-
"""Subset for variables needed for processing and load into memory.
820-
821-
Subsetting the dataset reduces its memory footprint. Loading is
822-
necessary because there seems to be an issue with `open_mfdataset()`
823-
and using the multiprocessing scheduler defined in e3sm_diags,
824-
resulting in timeouts and resource locking. To avoid this, we load the
825-
multi-file dataset into memory before performing downstream operations.
826-
827-
Source: https://github.com/pydata/xarray/issues/3781
828-
829-
Parameters
830-
----------
831-
ds : xr.Dataset
832-
The dataset.
833-
834-
Returns
835-
-------
836-
xr.Dataset
837-
The dataset subsetted and loaded into memory.
838-
"""
839-
# slat and slon are lat lon pair for staggered FV grid included in
840-
# remapped files.
841-
if "slat" in ds.dims:
842-
ds = ds.drop_dims(["slat", "slon"])
843-
844-
all_vars_keys = list(ds.data_vars.keys())
845-
hybrid_var_keys = set(list(sum(HYBRID_SIGMA_KEYS.values(), ())))
846-
keep_vars = [
847-
var
848-
for var in all_vars_keys
849-
if "bnd" in var or "bounds" in var or var in hybrid_var_keys
850-
]
851-
ds = ds[[self.var] + keep_vars]
852-
853-
ds.load(scheduler="sync")
854-
855-
return ds
856-
857805
# --------------------------------------------------------------------------
858806
# Time series related methods
859807
# --------------------------------------------------------------------------

e3sm_diags/parameter/core_parameter.py

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -46,10 +46,6 @@
4646
from e3sm_diags.driver.utils.dataset_xr import Dataset
4747

4848

49-
if TYPE_CHECKING:
50-
from e3sm_diags.driver.utils.dataset_xr import Dataset
51-
52-
5349
class CoreParameter:
5450
def __init__(self):
5551
# File I/O

e3sm_diags/plot/cartopy/aerosol_aeronet_plot.py

Lines changed: 0 additions & 132 deletions
This file was deleted.

0 commit comments

Comments
 (0)