Skip to content

Commit 2504762

Browse files
committed
Fix documentation issue #3035
1 parent e7fdb15 commit 2504762

File tree

2 files changed

+7
-7
lines changed

2 files changed

+7
-7
lines changed

doc/source/tech_note/Fluxes/CLM50_Tech_Note_Fluxes.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1147,7 +1147,7 @@ where :math:`\overrightarrow{S}_{v}` is the solar radiation absorbed by the vege
11471147
11481148
\Delta T_{v} =\frac{\overrightarrow{S}_{v} -\overrightarrow{L}_{v} -H_{v} -\lambda E_{v} }{\frac{\partial \overrightarrow{L}_{v} }{\partial T_{v} } +\frac{\partial H_{v} }{\partial T_{v} } +\frac{\partial \lambda E_{v} }{\partial T_{v} } }
11491149
1150-
where :math:`\Delta T_{v} =T_{v}^{n+1} -T_{v}^{n}` and the subscript "n" indicates the iteration.
1150+
where :math:`\Delta T_{v} =T_{v}^{k+1} -T_{v}^{k}` and the subscript "k" indicates the iteration.
11511151

11521152
The partial derivatives are
11531153

@@ -1227,9 +1227,9 @@ The numerical solution for vegetation temperature and the fluxes of momentum, se
12271227

12281228
#. Latent heat flux from vegetation :math:`\lambda E_{v}` (:eq:`5.101` )
12291229

1230-
#. If the latent heat flux has changed sign from the latent heat flux computed at the previous iteration (:math:`\lambda E_{v} ^{n+1} \times \lambda E_{v} ^{n} <0`), the latent heat flux is constrained to be 10% of the computed value. The difference between the constrained and computed value (:math:`\Delta _{1} =0.1\lambda E_{v} ^{n+1} -\lambda E_{v} ^{n+1}` ) is added to the sensible heat flux later.
1230+
#. If the latent heat flux has changed sign from the latent heat flux computed at the previous iteration (:math:`\lambda E_{v} ^{k+1} \times \lambda E_{v} ^{k} <0`), the latent heat flux is constrained to be 10% of the computed value. The difference between the constrained and computed value (:math:`\Delta _{1} =0.1\lambda E_{v} ^{k+1} -\lambda E_{v} ^{k+1}` ) is added to the sensible heat flux later.
12311231

1232-
#. Change in vegetation temperature :math:`\Delta T_{v}` (:eq:`5.129` ) and update the vegetation temperature as :math:`T_{v}^{n+1} =T_{v}^{n} +\Delta T_{v}`. :math:`T_{v}` is constrained to change by no more than 1°K in one iteration. If this limit is exceeded, the energy error is
1232+
#. Change in vegetation temperature :math:`\Delta T_{v}` (:eq:`5.129` ) and update the vegetation temperature as :math:`T_{v}^{k+1} =T_{v}^{k} +\Delta T_{v}`. :math:`T_{v}` is constrained to change by no more than 1°K in one iteration. If this limit is exceeded, the energy error is
12331233

12341234
.. math::
12351235
:label: 5.138
@@ -1269,7 +1269,7 @@ The error :math:`\lambda \Delta _{3}` is added to the sensible heat flux later.
12691269

12701270
#. Monin-Obukhov length :math:`L` (:eq:`5.49` )
12711271

1272-
#. The iteration is stopped after two or more steps if :math:`\tilde{\Delta }T_{v} <0.01` and :math:`\left|\lambda E_{v}^{n+1} -\lambda E_{v}^{n} \right|<0.1` where :math:`\tilde{\Delta }T_{v} =\max \left(\left|T_{v}^{n+1} -T_{v}^{n} \right|,\, \left|T_{v}^{n} -T_{v}^{n-1} \right|\right)`, or after forty iterations have been carried out.
1272+
#. The iteration is stopped after two or more steps if :math:`\tilde{\Delta }T_{v} <0.01` and :math:`\left|\lambda E_{v}^{k+1} -\lambda E_{v}^{k} \right|<0.1` where :math:`\tilde{\Delta }T_{v} =\max \left(\left|T_{v}^{k+1} -T_{v}^{k} \right|,\, \left|T_{v}^{k} -T_{v}^{k-1} \right|\right)`, or after forty iterations have been carried out.
12731273

12741274
#. Momentum fluxes :math:`\tau _{x}`, :math:`\tau _{y}` (:eq:`5.5`, :eq:`5.6`)
12751275

doc/source/tech_note/Radiative_Fluxes/CLM50_Tech_Note_Radiative_Fluxes.rst

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -141,9 +141,9 @@ where
141141
.. math::
142142
:label: 4.14
143143
144-
\begin{array}{l} {L_{vg} \, \uparrow =\left(1-\varepsilon _{g} \right)\left(1-\varepsilon _{v} \right)\left(1-\varepsilon _{v} \right)L_{atm} \, \downarrow } \\ {\qquad \qquad +\varepsilon _{v} \left[1+\left(1-\varepsilon _{g} \right)\left(1-\varepsilon _{v} \right)\right]\sigma \left(T_{v}^{n} \right)^{3} \left[T_{v}^{n} +4\left(T_{v}^{n+1} -T_{v}^{n} \right)\right]} \\ {\qquad \qquad +\varepsilon _{g} \left(1-\varepsilon _{v} \right)\sigma \left(T_{g}^{n} \right)^{4} } \\ {\qquad =\left(1-\varepsilon _{g} \right)\left(1-\varepsilon _{v} \right)\left(1-\varepsilon _{v} \right)L_{atm} \, \downarrow } \\ {\qquad \qquad +\varepsilon _{v} \sigma \left(T_{v}^{n} \right)^{4} } \\ {\qquad \qquad +\varepsilon _{v} \left(1-\varepsilon _{g} \right)\left(1-\varepsilon _{v} \right)\sigma \left(T_{v}^{n} \right)^{4} } \\ {\qquad \qquad +4\varepsilon _{v} \sigma \left(T_{v}^{n} \right)^{3} \left(T_{v}^{n+1} -T_{v}^{n} \right)} \\ {\qquad \qquad +4\varepsilon _{v} \left(1-\varepsilon _{g} \right)\left(1-\varepsilon _{v} \right)\sigma \left(T_{v}^{n} \right)^{3} \left(T_{v}^{n+1} -T_{v}^{n} \right)} \\ {\qquad \qquad +\varepsilon _{g} \left(1-\varepsilon _{v} \right)\sigma \left(T_{g}^{n} \right)^{4} } \end{array}
144+
\begin{array}{l} {L_{vg} \, \uparrow =\left(1-\varepsilon _{g} \right)\left(1-\varepsilon _{v} \right)\left(1-\varepsilon _{v} \right)L_{atm} \, \downarrow } \\ {\qquad \qquad +\varepsilon _{v} \left[1+\left(1-\varepsilon _{g} \right)\left(1-\varepsilon _{v} \right)\right]\sigma \left(T_{v}^{n+1,k} \right)^{3} \left[T_{v}^{n+1,k} +4\left(T_{v}^{n+1,k+1} -T_{v}^{n+1} \right)\right]} \\ {\qquad \qquad +\varepsilon _{g} \left(1-\varepsilon _{v} \right)\sigma \left(T_{g}^{n} \right)^{4} } \\ {\qquad =\left(1-\varepsilon _{g} \right)\left(1-\varepsilon _{v} \right)\left(1-\varepsilon _{v} \right)L_{atm} \, \downarrow } \\ {\qquad \qquad +\varepsilon _{v} \sigma \left(T_{v}^{n+1,k} \right)^{4} } \\ {\qquad \qquad +\varepsilon _{v} \left(1-\varepsilon _{g} \right)\left(1-\varepsilon _{v} \right)\sigma \left(T_{v}^{n+1,k} \right)^{4} } \\ {\qquad \qquad +4\varepsilon _{v} \sigma \left(T_{v}^{n+1,k} \right)^{3} \left(T_{v}^{n+1,k+1} -T_{v}^{n+1} \right)} \\ {\qquad \qquad +4\varepsilon _{v} \left(1-\varepsilon _{g} \right)\left(1-\varepsilon _{v} \right)\sigma \left(T_{v}^{n+1,k} \right)^{3} \left(T_{v}^{n+1,k+1} -T_{v}^{n+1} \right)} \\ {\qquad \qquad +\varepsilon _{g} \left(1-\varepsilon _{v} \right)\sigma \left(T_{g}^{n} \right)^{4} } \end{array}
145145
146-
where :math:`\varepsilon _{v}` is the vegetation emissivity and :math:`T_{v}^{n+1}` and :math:`T_{v}^{n}` are the vegetation temperatures at the current and previous time steps, respectively (:ref:`rst_Momentum, Sensible Heat, and Latent Heat Fluxes`). The first term in the equation above is the atmospheric longwave radiation that is transmitted through the canopy, reflected by the ground, and transmitted through the canopy to the atmosphere. The second term is the longwave radiation emitted by the canopy directly to the atmosphere. The third term is the longwave radiation emitted downward from the canopy, reflected by the ground, and transmitted through the canopy to the atmosphere. The fourth term is the increase (decrease) in longwave radiation due to an increase (decrease) in canopy temperature that is emitted by the canopy directly to the atmosphere. The fifth term is the increase (decrease) in longwave radiation due to an increase (decrease) in canopy temperature that is emitted downward from the canopy, reflected from the ground, and transmitted through the canopy to the atmosphere. The last term is the longwave radiation emitted by the ground and transmitted through the canopy to the atmosphere.
146+
where :math:`\varepsilon _{v}` is the vegetation emissivity, :math:`T_{v}^{n+1}` and :math:`T_{v}^{n}` are the vegetation temperatures at the current and previous time steps, respectively, and :math:`k` is the iteration level (:ref:`rst_Momentum, Sensible Heat, and Latent Heat Fluxes`). The first term in the equation above is the atmospheric longwave radiation that is transmitted through the canopy, reflected by the ground, and transmitted through the canopy to the atmosphere. The second term is the longwave radiation emitted by the canopy directly to the atmosphere. The third term is the longwave radiation emitted downward from the canopy, reflected by the ground, and transmitted through the canopy to the atmosphere. The fourth term is the increase (decrease) in longwave radiation due to an increase (decrease) in canopy temperature that is emitted by the canopy directly to the atmosphere. The fifth term is the increase (decrease) in longwave radiation due to an increase (decrease) in canopy temperature that is emitted downward from the canopy, reflected from the ground, and transmitted through the canopy to the atmosphere. The last term is the longwave radiation emitted by the ground and transmitted through the canopy to the atmosphere.
147147
148148
The upward longwave radiation from the ground is
149149

@@ -157,7 +157,7 @@ where :math:`L_{v} \, \downarrow` is the downward longwave radiation below the v
157157
.. math::
158158
:label: 4.16
159159
160-
L_{v} \, \downarrow =\left(1-\varepsilon _{v} \right)L_{atm} \, \downarrow +\varepsilon _{v} \sigma \left(T_{v}^{n} \right)^{4} +4\varepsilon _{v} \sigma \left(T_{v}^{n} \right)^{3} \left(T_{v}^{n+1} -T_{v}^{n} \right).
160+
L_{v} \, \downarrow =\left(1-\varepsilon _{v} \right)L_{atm} \, \downarrow +\varepsilon _{v} \sigma \left(T_{v}^{n+1,k} \right)^{4} +4\varepsilon _{v} \sigma \left(T_{v}^{n+1,k} \right)^{3} \left(T_{v}^{n+1,k+1} -T_{v}^{n+1} \right).
161161
162162
The net longwave radiation flux for the ground is (positive toward the atmosphere)
163163

0 commit comments

Comments
 (0)