-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblack_box_tool.py
683 lines (651 loc) · 30.3 KB
/
black_box_tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
import os.path
import random
import time
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader
from dataset.cifar100 import Cifar100, Cifar100_Specific
from dataset.samplers import CategoriesSampler
from dataset.miniimagenet import MiniImageNet, MiniImageNet_Specific
from dataset.omniglot import Omniglot, Omniglot_Specific
import network
from dataset.cub import CUB, CUB_Specific
from network import Conv4, ResNet34, ResNet18, ResNet50, ResNet10, ResNet101
import torch.nn.functional as F
from torchvision import transforms
def get_dataloader(args,noTransform_test=False):
if args.dataset == 'cifar100':
trainset = Cifar100(setname='meta_train', augment=False)
args.num_classes = trainset.num_class
args.img_size=trainset.img_size
# train_sampler = CategoriesSampler(trainset.label,
# args.episode_train,
# args.way_train,
# args.num_sup_train + args.num_qur_train,maml_allclass=args.maml_allclass)
# train_loader = DataLoader(dataset=trainset,
# num_workers=8,
# batch_sampler=train_sampler,
# pin_memory=True)
valset=Cifar100(setname='meta_val', augment=False)
val_sampler = CategoriesSampler(valset.label,
args.episode_test,
args.way_test,
args.num_sup_test + args.num_qur_test)
val_loader = DataLoader(dataset=valset,
num_workers=8,
batch_sampler=val_sampler,
pin_memory=True)
testset = Cifar100(setname='meta_test', augment=False,noTransform=noTransform_test)
test_sampler = CategoriesSampler(testset.label,
args.episode_test,
args.way_test,
args.num_sup_test + args.num_qur_test)
test_loader = DataLoader(dataset=testset,
num_workers=8,
batch_sampler=test_sampler,
pin_memory=True)
return None, val_loader, test_loader
elif args.dataset == 'miniimagenet':
trainset = MiniImageNet(setname='meta_train', augment=False)
args.num_classes = trainset.num_class
args.img_size = trainset.img_size
# train_sampler = CategoriesSampler(trainset.label,
# args.episode_train,
# args.way_train,
# args.num_sup_train + args.num_qur_train)
# train_loader = DataLoader(dataset=trainset,
# num_workers=8,
# batch_sampler=train_sampler,
# pin_memory=True)
valset = MiniImageNet(setname='meta_val', augment=False)
val_sampler = CategoriesSampler(valset.label,
args.episode_test,
args.way_test,
args.num_sup_test + args.num_qur_test)
val_loader = DataLoader(dataset=valset,
num_workers=8,
batch_sampler=val_sampler,
pin_memory=True)
testset = MiniImageNet(setname='meta_test', augment=False, noTransform=noTransform_test)
test_sampler = CategoriesSampler(testset.label,
args.episode_test,
args.way_test,
args.num_sup_test + args.num_qur_test)
test_loader = DataLoader(dataset=testset,
num_workers=8,
batch_sampler=test_sampler,
pin_memory=True)
return None, val_loader, test_loader
elif args.dataset == 'omniglot':
trainset = Omniglot(setname='meta_train', augment=False)
args.num_classes = trainset.num_class
args.img_size = trainset.img_size
# train_sampler = CategoriesSampler(trainset.label,
# args.episode_train,
# args.way_train,
# args.num_sup_train + args.num_qur_train)
# train_loader = DataLoader(dataset=trainset,
# num_workers=8,
# batch_sampler=train_sampler,
# pin_memory=True)
testset = Omniglot(setname='meta_test', augment=False, noTransform=noTransform_test)
test_sampler = CategoriesSampler(testset.label,
args.episode_test,
args.way_test,
args.num_sup_test + args.num_qur_test)
test_loader = DataLoader(dataset=testset,
num_workers=8,
batch_sampler=test_sampler,
pin_memory=True)
val_loader=None
return None, val_loader, test_loader
elif args.dataset=='cub':
trainset = CUB(setname='meta_train', augment=False)
args.num_classes = trainset.num_class
args.img_size = trainset.img_size
# train_sampler = CategoriesSampler(trainset.label,
# args.episode_train,
# args.way_train,
# args.num_sup_train + args.num_qur_train)
# train_loader = DataLoader(dataset=trainset,
# num_workers=8,
# batch_sampler=train_sampler,
# pin_memory=True)
valset = CUB(setname='meta_val', augment=False)
val_sampler = CategoriesSampler(valset.label,
args.episode_test,
args.way_test,
args.num_sup_test + args.num_qur_test)
val_loader = DataLoader(dataset=valset,
num_workers=8,
batch_sampler=val_sampler,
pin_memory=True)
testset = CUB(setname='meta_test', augment=False, noTransform=noTransform_test)
test_sampler = CategoriesSampler(testset.label,
args.episode_test,
args.way_test,
args.num_sup_test + args.num_qur_test)
test_loader = DataLoader(dataset=testset,
num_workers=8,
batch_sampler=test_sampler,
pin_memory=True)
return None, val_loader, test_loader
elif args.dataset=='mix':
testset_cifar = Cifar100(setname='meta_test', augment=False, noTransform=noTransform_test)
test_sampler = CategoriesSampler(testset_cifar.label,
args.episode_test,
args.way_test,
args.num_sup_test + args.num_qur_test)
test_loader_cifar = DataLoader(dataset=testset_cifar,
num_workers=8,
batch_sampler=test_sampler,
pin_memory=True)
testset_mini = MiniImageNet(setname='meta_test', augment=False, noTransform=noTransform_test)
test_sampler = CategoriesSampler(testset_mini.label,
args.episode_test,
args.way_test,
args.num_sup_test + args.num_qur_test)
test_loader_mini = DataLoader(dataset=testset_mini,
num_workers=8,
batch_sampler=test_sampler,
pin_memory=True)
testset_cub = CUB(setname='meta_test', augment=False, noTransform=noTransform_test)
test_sampler = CategoriesSampler(testset_cub.label,
args.episode_test,
args.way_test,
args.num_sup_test + args.num_qur_test)
test_loader_cub = DataLoader(dataset=testset_cub,
num_workers=8,
batch_sampler=test_sampler,
pin_memory=True)
return test_loader_cifar, test_loader_mini, test_loader_cub
else:
ValueError('not implemented!')
#return None, val_loader, test_loader
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.enabled = False
# torch.backends.cudnn.benchmark = False
def set_maml(flag):
network.ConvBlock.maml = flag
network.SimpleBlock.maml = flag
network.BottleneckBlock.maml = flag
network.ResNet.maml = flag
network.ConvNet.maml = flag
def get_model(args,mode='train',set_maml_value=True,arbitrary_input=False):
set_maml(set_maml_value)
if mode=='train':
way=args.way_train
else:
way = args.way_test
if args.backbone == 'conv4':
model_maml = Conv4(flatten=True, out_dim=way, img_size=args.img_size,arbitrary_input=arbitrary_input,channel=args.channel)
elif args.backbone == 'resnet34':
model_maml = ResNet34(flatten=True, out_dim=way)
elif args.backbone == 'resnet18':
model_maml = ResNet18(flatten=True, out_dim=way)
elif args.backbone == 'resnet50':
model_maml = ResNet50(flatten=True, out_dim=way)
elif args.backbone == 'resnet101':
model_maml = ResNet101(flatten=True, out_dim=way)
elif args.backbone=='resnet10':
model_maml = ResNet10(flatten=True, out_dim=way)
else:
raise NotImplementedError
return model_maml
def get_premodel(args,getType=None):
set_maml(False)
way=args.way_pretrain
if args.pre_backbone == 'conv4':
model_maml = Conv4(flatten=True, out_dim=way, img_size=args.img_size,arbitrary_input=False,channel=args.channel)
elif args.pre_backbone == 'resnet34':
model_maml = ResNet34(flatten=True, out_dim=way)
elif args.pre_backbone == 'resnet18':
model_maml = ResNet18(flatten=True, out_dim=way)
elif args.pre_backbone == 'resnet50':
model_maml = ResNet50(flatten=True, out_dim=way)
elif args.backbone == 'resnet101':
model_maml = ResNet101(flatten=True, out_dim=way)
elif args.pre_backbone=='resnet10':
model_maml = ResNet10(flatten=True, out_dim=way)
elif args.pre_backbone=='mix':
pre_backbone = getType
if pre_backbone == 'conv4':
model_maml = Conv4(flatten=True, out_dim=way, img_size=args.img_size)
elif pre_backbone == 'resnet34':
model_maml = ResNet34(flatten=True, out_dim=way)
elif pre_backbone == 'resnet18':
model_maml = ResNet18(flatten=True, out_dim=way)
elif pre_backbone == 'resnet50':
model_maml = ResNet50(flatten=True, out_dim=way)
elif pre_backbone == 'resnet10':
model_maml = ResNet10(flatten=True, out_dim=way)
else:
ValueError('not implemented!')
return model_maml
class Timer():
def __init__(self):
self.o = time.time()
def measure(self, p=1):
x = (time.time() - self.o) / p
x = int(x)
if x >= 3600:
return '{:.1f}h'.format(x / 3600)
if x >= 60:
return '{}m'.format(round(x / 60))
return '{}s'.format(x)
def compute_confidence_interval(data):
"""
Compute 95% confidence interval
:param data: An array of mean accuracy (or mAP) across a number of sampled episodes.
:return: the 95% confidence interval for this data.
"""
a = 1.0 * np.array(data)
m = np.mean(a)
std = np.std(a)
pm = 1.96 * (std / np.sqrt(len(a)))
return m, pm
def data2supportquery(args,mode,data):
if mode=='train':
way=args.way_train
num_sup=args.num_sup_train
num_qur=args.num_qur_train
else:
way = args.way_test
num_sup = args.num_sup_test
num_qur = args.num_qur_test
label = torch.arange(way, dtype=torch.int16).repeat(num_qur+num_sup)
label = label.type(torch.LongTensor)
label = label.cuda()
support=data[:way*num_sup]
support_label=label[:way*num_sup]
query=data[way*num_sup:]
query_label=label[way*num_sup:]
return support,support_label,query,query_label
class Generator(nn.Module):
def __init__(self, nz=100, ngf=64, img_size=32, nc=3):
super(Generator, self).__init__()
self.init_size = img_size // 4
self.l1 = nn.Sequential(nn.Linear(nz, ngf * 2 * self.init_size ** 2))
self.conv_blocks = nn.Sequential(
nn.BatchNorm2d(ngf * 2),
nn.Upsample(scale_factor=2),
nn.Conv2d(ngf*2, ngf*2, 3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(ngf*2),
nn.LeakyReLU(0.2, inplace=True),
nn.Upsample(scale_factor=2),
nn.Conv2d(ngf*2, ngf, 3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(ngf),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ngf, nc, 3, stride=1, padding=1),
nn.Sigmoid(),
)
def forward(self, z):
out = self.l1(z)
out = out.view(out.shape[0], -1, self.init_size, self.init_size)
img = self.conv_blocks(out)
return img
NORMALIZE_DICT = {
'mnist': dict(mean=(0.1307,), std=(0.3081,)),
'cifar10': dict(mean=(0.4914, 0.4822, 0.4465), std=(0.2023, 0.1994, 0.2010)),
'cifar100': dict(mean=(0.5071, 0.4867, 0.4408), std=(0.2675, 0.2565, 0.2761)),
'miniimagenet': dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
'cub': dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
'tinyimagenet': dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
'cub200': dict(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'stanford_dogs': dict(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'stanford_cars': dict(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'places365_32x32': dict(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'places365_64x64': dict(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'places365': dict(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'svhn': dict(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'tiny_imagenet': dict(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'imagenet_32x32': dict(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
# for semantic segmentation
'camvid': dict(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'nyuv2': dict(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
}
def normalize(tensor, mean, std, reverse=False):
if reverse:
_mean = [-m / s for m, s in zip(mean, std)]
_std = [1 / s for s in std]
else:
_mean = mean
_std = std
_mean = torch.as_tensor(_mean, dtype=tensor.dtype, device=tensor.device)
_std = torch.as_tensor(_std, dtype=tensor.dtype, device=tensor.device)
tensor = (tensor - _mean[None, :, None, None]) / (_std[None, :, None, None])
return tensor
class Normalizer(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, x, reverse=False):
return normalize(x, self.mean, self.std, reverse=reverse)
def kldiv( logits, targets, T=1.0, reduction='batchmean'):
q = F.log_softmax(logits/T, dim=1)
p = F.softmax( targets/T, dim=1 )
return F.kl_div( q, p, reduction=reduction ) * (T*T)
def label_abs2relative(specific, label_abs):
trans = dict()
for relative, abs in enumerate(specific):
trans[abs] = relative
label_relative = []
for abs in label_abs:
label_relative.append(trans[abs.item()])
return torch.LongTensor(label_relative)
def pretrain(args,specific,device):
if args.dataset=='cifar100':
train_dataset = Cifar100_Specific(setname='meta_train', specific=specific, mode='train')
assert len(train_dataset)==args.way_pretrain*480, 'error'
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128, shuffle=True, num_workers=8,pin_memory=True)
test_dataset = Cifar100_Specific(setname='meta_train', specific=specific, mode='test')
assert len(test_dataset) == args.way_pretrain*120, 'error'
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=128, shuffle=True, num_workers=8,pin_memory=True)
channel=3
num_epoch = 60
learning_rate = 0.01
elif args.dataset=='miniimagenet':
train_dataset = MiniImageNet_Specific(setname='meta_train', specific=specific, mode='train')
assert len(train_dataset) == args.way_pretrain*480, 'error'
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128, shuffle=True, num_workers=8,
pin_memory=True)
test_dataset = MiniImageNet_Specific(setname='meta_train', specific=specific, mode='test')
assert len(test_dataset) == args.way_pretrain*120, 'error'
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=128, shuffle=True, num_workers=8,
pin_memory=True)
channel = 3
num_epoch = 60
learning_rate = 0.01
elif args.dataset=='omniglot':
train_dataset = Omniglot_Specific(setname='meta_train', specific=specific, mode='train')
assert len(train_dataset) == 80, 'error'
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=80, shuffle=True, num_workers=8,
pin_memory=True)
test_dataset = Omniglot_Specific(setname='meta_train', specific=specific, mode='test')
assert len(test_dataset) == 20, 'error'
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=20, shuffle=True, num_workers=8,
pin_memory=True)
channel = 1
num_epoch = 60
learning_rate = 0.1
elif args.dataset=='cub':
train_dataset = CUB_Specific(setname='meta_train', specific=specific, mode='train')
#assert len(train_dataset) == 2400, 'error'
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128, shuffle=True, num_workers=8,
pin_memory=True)
test_dataset = CUB_Specific(setname='meta_train', specific=specific, mode='test')
#assert len(test_dataset) == 600, 'error'
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=128, shuffle=True, num_workers=8,
pin_memory=True)
channel = 3
num_epoch = 100
learning_rate = 0.01
set_maml(False)
if args.pre_backbone=='conv4':
teacher=Conv4(flatten=True, out_dim=args.way_pretrain, img_size=train_dataset.img_size,arbitrary_input=False,channel=channel).cuda(device)
optimizer = torch.optim.Adam(params=teacher.parameters(), lr=learning_rate)
#optimizer=torch.optim.SGD(params=teacher.parameters(),lr=learning_rate,momentum=.9, weight_decay=5e-4)
lr_schedule = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizer, milestones=[70], gamma=0.2)#70 default#[30, 50, 80]
elif args.pre_backbone=='resnet18':
teacher=ResNet18(flatten=True,out_dim=args.way_pretrain).cuda(device)
#optimizer = torch.optim.Adam(params=teacher.parameters(), lr=learning_rate)
optimizer=torch.optim.SGD(params=teacher.parameters(),lr=learning_rate,momentum=.9, weight_decay=5e-4)
lr_schedule = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizer, milestones=[30, 50, 80], gamma=0.2)
elif args.pre_backbone=='resnet10':
teacher = ResNet10(flatten=True, out_dim=args.way_pretrain).cuda(device)
# optimizer = torch.optim.Adam(params=teacher.parameters(), lr=learning_rate)
optimizer = torch.optim.SGD(params=teacher.parameters(), lr=learning_rate, momentum=.9, weight_decay=5e-4)
lr_schedule = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizer, milestones=[30, 50, 80], gamma=0.2)
elif args.pre_backbone=='resnet50':
teacher = ResNet50(flatten=True, out_dim=args.way_pretrain).cuda(device)
# optimizer = torch.optim.Adam(params=teacher.parameters(), lr=learning_rate)
optimizer = torch.optim.SGD(params=teacher.parameters(), lr=learning_rate, momentum=.9, weight_decay=5e-4)
lr_schedule = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizer, milestones=[30, 50, 80], gamma=0.2)
elif args.pre_backbone=='resnet101':
teacher = ResNet101(flatten=True, out_dim=args.way_pretrain).cuda(device)
# optimizer = torch.optim.Adam(params=teacher.parameters(), lr=learning_rate)
optimizer = torch.optim.SGD(params=teacher.parameters(), lr=learning_rate, momentum=.9, weight_decay=5e-4)
lr_schedule = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizer, milestones=[30, 50, 80], gamma=0.2)
#train
best_pre_model=None
best_acc=None
not_increase=0
for epoch in range(num_epoch):
# train
teacher.train()
for batch_count, batch in enumerate(train_loader):
optimizer.zero_grad()
image, abs_label = batch[0].cuda(device), batch[1].cuda(device)
relative_label = label_abs2relative(specific=specific, label_abs=abs_label).cuda(device)
logits = teacher(image)
criteria = torch.nn.CrossEntropyLoss()
loss = criteria(logits, relative_label)
loss.backward()
torch.nn.utils.clip_grad_norm_(teacher.parameters(), 50)
optimizer.step()
lr_schedule.step()
correct, total = 0, 0
teacher.eval()
for batch_count, batch in enumerate(test_loader):
image, abs_label = batch[0].cuda(device), batch[1].cuda(device)
relative_label = label_abs2relative(specific=specific, label_abs=abs_label).cuda(device)
logits = teacher(image)
prediction = torch.max(logits, 1)[1]
correct = correct + (prediction.cpu() == relative_label.cpu()).sum()
total = total + len(relative_label)
test_acc = 100 * correct / total
if best_acc==None or best_acc<test_acc:
best_acc=test_acc
best_epoch=epoch
best_pre_model=teacher.state_dict()
not_increase=0
else:
not_increase=not_increase+1
if not_increase==60:#7 for cifar and mini; 20 for omniglot
print('early stop at:',best_epoch)
break
print('epoch{}acc:'.format(epoch),test_acc,'best{}acc:'.format(best_epoch),best_acc)
return best_pre_model,best_acc
def pretrains(args,num,device,pretrain_path):
list_all=[]
for i in range(num):
#setup_seed(222 + i)
specific=random.sample(range(args.class_num),args.way_pretrain)
print(specific)
teacher,acc=pretrain(args,specific,device)
print('teacher{}_acc:'.format(i),acc)
list_all.append([specific,acc])
torch.save({'teacher':teacher,'specific':specific},os.path.join(pretrain_path,'model_specific_{}.pth'.format(i)))
def get_transform(args,dataset=None):
if dataset==None:
dataset=args.dataset
transform=None
if dataset=='cifar100':
transform = transforms.Compose(
[
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
]
)
elif dataset=='miniimagenet':
transform = transforms.Compose(
[
transforms.Resize((84, 84)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
elif dataset=='omniglot':
transform = transforms.Compose(
[
#transforms.Resize((28, 28)),
lambda x: x.resize((28, 28)),
lambda x: np.reshape(x, (28, 28, 1)),
transforms.ToTensor(),
]
)
elif dataset=='cub':
transform = transforms.Compose(
[
transforms.Resize((84, 84)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
return transform
def get_transform_no_toTensor(args,dataset=None):
if dataset==None:
dataset=args.dataset
transform = None
if dataset=='cifar100':
transform = transforms.Compose(
[
#transforms.Resize((32, 32)),
transforms.RandomCrop(size=[32, 32], padding=4),
transforms.RandomHorizontalFlip(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
]
)
elif dataset=='miniimagenet':
transform = transforms.Compose(
[
transforms.RandomCrop(size=[84, 84], padding=4),
transforms.RandomHorizontalFlip(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
elif dataset=='omniglot':
transform = transforms.Compose(
[
#lambda x: x.resize((28, 28), padding=4),
transforms.RandomCrop((28, 28), padding=4),
transforms.RandomHorizontalFlip(),
]
)
elif dataset=='cub':
transform = transforms.Compose(
[
transforms.RandomCrop(size=[84, 84], padding=4),
transforms.RandomHorizontalFlip(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
return transform
# def get_transform_no_toTensor_localview(args):
# if args.dataset=='cifar100':
# transform = transforms.Compose(
# [
# #transforms.Resize((32, 32)),
# transforms.RandomResizedCrop(size=[32, 32], scale=(0.25, 1.0)),
# transforms.RandomHorizontalFlip(),
# transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
# ]
# )
# elif args.dataset=='miniimagenet':
# transform = transforms.Compose(
# [
# transforms.RandomResizedCrop(size=[84, 84], scale=(0.25, 1.0)),
# transforms.RandomHorizontalFlip(),
# transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
# ]
# )
# elif args.dataset=='omniglot':
# pass
# return transform
#
#
#
# def get_transform_globalview(args):
# if args.dataset=='cifar100':
# transform = transforms.Compose(
# [
# transforms.RandomCrop(size=[32, 32], padding=4),
# transforms.RandomHorizontalFlip(),
# transforms.ToTensor(),
# transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
# ]
# )
# elif args.dataset=='miniimagenet':
# transform = transforms.Compose(
# [
# transforms.RandomCrop(size=[84, 84],padding=4),
# transforms.RandomHorizontalFlip(),
# transforms.ToTensor(),
# transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
# ]
# )
# elif args.dataset=='omniglot':
# pass
# return transform
# def get_transform_localview(args):
# if args.dataset=='cifar100':
# transform = transforms.Compose(
# [
# transforms.RandomResizedCrop(size=[32, 32], scale=(0.25, 1.0)),
# transforms.RandomHorizontalFlip(),
# transforms.ToTensor(),
# transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
# ]
# )
# elif args.dataset=='miniimagenet':
# transform = transforms.Compose(
# [
# transforms.RandomResizedCrop(size=[84, 84], scale=(0.25, 1.0)),
# transforms.RandomHorizontalFlip(),
# transforms.ToTensor(),
# transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
# ]
# )
# elif args.dataset=='omniglot':
# pass
# return transform
def one_hot(label_list,class_num):
temp_label=label_list.reshape(len(label_list),1)
y_one_hot = torch.zeros(len(label_list), class_num).scatter_(1, temp_label, 1)
return y_one_hot
def get_84_transform(args,dataset=None):
if dataset==None:
dataset=args.dataset
transform=None
if dataset=='cifar100':
transform = transforms.Compose(
[
transforms.Resize((84, 84)),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
]
)
elif dataset=='miniimagenet':
transform = transforms.Compose(
[
transforms.Resize((84, 84)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
elif dataset=='omniglot':
transform = transforms.Compose(
[
#transforms.Resize((28, 28)),
lambda x: x.resize((28, 28)),
lambda x: np.reshape(x, (28, 28, 1)),
transforms.ToTensor(),
]
)
elif dataset=='cub':
transform = transforms.Compose(
[
transforms.Resize((84, 84)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
return transform