-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLoop.v
307 lines (264 loc) · 9.61 KB
/
Loop.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
(* *****************************************************************)
(* *)
(* Verified polyhedral AST generation *)
(* *)
(* Nathanaël Courant, Inria Paris *)
(* *)
(* Copyright Inria. All rights reserved. This file is distributed *)
(* under the terms of the GNU Lesser General Public License as *)
(* published by the Free Software Foundation, either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* *****************************************************************)
Require Import ZArith.
Require Import List.
Require Import Bool.
Require Import Psatz.
Require Import Instr.
Require Import Misc.
Require Import Semantics.
Open Scope Z_scope.
Open Scope list_scope.
(** * The semantics of the Loop language *)
Inductive expr :=
| Constant : Z -> expr
| Sum : expr -> expr -> expr
| Mult : Z -> expr -> expr
| Div : expr -> Z -> expr
| Mod : expr -> Z -> expr
| Var : nat -> expr
| Max : expr -> expr -> expr
| Min : expr -> expr -> expr.
Fixpoint eval_expr (env : list Z) (e : expr) :=
match e with
| Constant c => c
| Sum e1 e2 => eval_expr env e1 + eval_expr env e2
| Mult k e => k * eval_expr env e
| Div e k => eval_expr env e / k
| Mod e k => (eval_expr env e) mod k
| Var n => nth n env 0
| Max e1 e2 => Z.max (eval_expr env e1) (eval_expr env e2)
| Min e1 e2 => Z.min (eval_expr env e1) (eval_expr env e2)
end.
Ltac destruct_match :=
match goal with
| [ |- context[match ?X with _ => _ end] ] => destruct X
end.
Definition make_sum e1 e2 :=
match e1, e2 with
| Constant n, Constant m => Constant (n + m)
| Constant 0, e2 => e2
| e1, Constant 0 => e1
| e1, e2 => Sum e1 e2
end.
Lemma make_sum_correct :
forall env e1 e2, eval_expr env (make_sum e1 e2) = eval_expr env e1 + eval_expr env e2.
Proof.
intros env e1 e2; unfold make_sum; repeat destruct_match; simpl; try reflexivity; lia.
Qed.
Definition make_mult n e :=
match n, e with
| _, Constant m => Constant (n * m)
| 0, _ => Constant 0
| 1, e => e
| n, e => Mult n e
end.
Lemma make_mult_correct :
forall env n e, eval_expr env (make_mult n e) = n * eval_expr env e.
Proof.
intros env n e; unfold make_mult; repeat (destruct_match; simpl); try reflexivity; lia.
Qed.
Definition make_div e n :=
match e, n with
| Constant m, _ => Constant (m / n)
| e, 1 => e
| e, -1 => make_mult (-1) e
| e, n => Div e n
end.
Lemma make_div_correct :
forall env e n, eval_expr env (make_div e n) = eval_expr env e / n.
Proof.
intros env e n; unfold make_div; repeat (destruct_match; simpl); try reflexivity; rewrite ?Z.div_1_r; try reflexivity;
rewrite <- Z.div_opp_opp, Z.div_1_r by lia; reflexivity.
Qed.
Definition make_mod e n :=
match e, n with
| Constant m, _ => Constant (m mod n)
| e, 1 => Constant 0
| e, (-1) => Constant 0
| e, n => Mod e n
end.
Lemma make_mod_correct :
forall env e n, eval_expr env (make_mod e n) = eval_expr env e mod n.
Proof.
intros env e n; unfold make_mod; repeat (destruct_match; simpl); try reflexivity; rewrite ?Z.mod_1_r; try reflexivity;
replace (-1) with (-(1)) by reflexivity; rewrite Z.mod_opp_r_z; rewrite ?Z.mod_1_r; lia.
Qed.
Definition make_max e1 e2 :=
match e1, e2 with
| Constant m, Constant n => Constant (Z.max m n)
| e1, e2 => Max e1 e2
end.
Lemma make_max_correct :
forall env e1 e2, eval_expr env (make_max e1 e2) = Z.max (eval_expr env e1) (eval_expr env e2).
Proof.
intros env e1 e2; unfold make_max; repeat (destruct_match; simpl); reflexivity.
Qed.
Definition make_min e1 e2 :=
match e1, e2 with
| Constant m, Constant n => Constant (Z.min m n)
| e1, e2 => Min e1 e2
end.
Lemma make_min_correct :
forall env e1 e2, eval_expr env (make_min e1 e2) = Z.min (eval_expr env e1) (eval_expr env e2).
Proof.
intros env e1 e2; unfold make_min; repeat (destruct_match; simpl); reflexivity.
Qed.
Inductive test :=
| LE : expr -> expr -> test
| EQ : expr -> expr -> test
| And : test -> test -> test
| Or : test -> test -> test
| Not : test -> test
| TConstantTest : bool -> test.
Fixpoint eval_test (env : list Z) (t : test) :=
match t with
| LE e1 e2 => eval_expr env e1 <=? eval_expr env e2
| EQ e1 e2 => eval_expr env e1 =? eval_expr env e2
| And t1 t2 => eval_test env t1 && eval_test env t2
| Or t1 t2 => eval_test env t1 || eval_test env t2
| Not t => negb (eval_test env t)
| TConstantTest b => b
end.
Definition make_le e1 e2 :=
match e1, e2 with
| Constant n, Constant m => TConstantTest (n <=? m)
| e1, e2 => LE e1 e2
end.
Lemma make_le_correct :
forall env e1 e2, eval_test env (make_le e1 e2) = (eval_expr env e1 <=? eval_expr env e2).
Proof.
intros env e1 e2; unfold make_le; repeat (destruct_match; simpl); reflexivity.
Qed.
Definition make_eq e1 e2 :=
match e1, e2 with
| Constant n, Constant m => TConstantTest (n =? m)
| e1, e2 => EQ e1 e2
end.
Lemma make_eq_correct :
forall env e1 e2, eval_test env (make_eq e1 e2) = (eval_expr env e1 =? eval_expr env e2).
Proof.
intros env e1 e2; unfold make_eq; repeat (destruct_match; simpl); reflexivity.
Qed.
Definition make_and t1 t2 :=
match t1, t2 with
| TConstantTest true, t | t, TConstantTest true => t
| TConstantTest false, _ | _, TConstantTest false => TConstantTest false
| t1, t2 => And t1 t2
end.
Lemma make_and_correct :
forall env t1 t2, eval_test env (make_and t1 t2) = eval_test env t1 && eval_test env t2.
Proof.
intros env t1 t2; unfold make_and; repeat (destruct_match; simpl); try reflexivity;
repeat (match goal with [ |- context[?X && ?Y]] => destruct X; simpl end); auto.
Qed.
Definition make_or t1 t2 :=
match t1, t2 with
| TConstantTest false, t | t, TConstantTest false => t
| TConstantTest true, _ | _, TConstantTest true => TConstantTest true
| t1, t2 => Or t1 t2
end.
Lemma make_or_correct :
forall env t1 t2, eval_test env (make_or t1 t2) = eval_test env t1 || eval_test env t2.
Proof.
intros env t1 t2; unfold make_or; repeat (destruct_match; simpl); try reflexivity;
repeat (match goal with [ |- context[?X || ?Y]] => destruct X; simpl end); auto.
Qed.
Definition make_not t :=
match t with
| TConstantTest b => TConstantTest (negb b)
| t => Not t
end.
Lemma make_not_correct :
forall env t, eval_test env (make_not t) = negb (eval_test env t).
Proof.
intros env t; unfold make_not; repeat (destruct_match; simpl); reflexivity.
Qed.
Fixpoint and_all l :=
match l with
| nil => TConstantTest true
| x :: l => make_and x (and_all l)
end.
Theorem and_all_correct :
forall l env, eval_test env (and_all l) = forallb (eval_test env) l.
Proof.
induction l; simpl in *; [auto|].
intros; rewrite make_and_correct, IHl; auto.
Qed.
Inductive stmt :=
| Loop : expr -> expr -> stmt -> stmt
| Instr : instr -> list expr -> stmt
| Seq : list stmt -> stmt
| Guard : test -> stmt -> stmt.
Inductive loop_semantics : stmt -> list Z -> mem -> mem -> Prop :=
| LInstr : forall i es env mem1 mem2,
instr_semantics i (map (eval_expr env) es) mem1 mem2 ->
loop_semantics (Instr i es) env mem1 mem2
| LSeqEmpty : forall env mem, loop_semantics (Seq nil) env mem mem
| LSeq : forall env st sts mem1 mem2 mem3,
loop_semantics st env mem1 mem2 ->
loop_semantics (Seq sts) env mem2 mem3 ->
loop_semantics (Seq (st :: sts)) env mem1 mem3
| LGuardTrue : forall env t st mem1 mem2,
loop_semantics st env mem1 mem2 ->
eval_test env t = true ->
loop_semantics (Guard t st) env mem1 mem2
| LGuardFalse : forall env t st mem,
eval_test env t = false -> loop_semantics (Guard t st) env mem mem
| LLoop : forall env lb ub st mem1 mem2,
iter_semantics (fun x => loop_semantics st (x :: env)) (Zrange (eval_expr env lb) (eval_expr env ub)) mem1 mem2 ->
loop_semantics (Loop lb ub st) env mem1 mem2.
Definition make_guard test inner :=
match test with
| TConstantTest true => inner
| TConstantTest false => Seq nil
| test => Guard test inner
end.
Lemma make_guard_correct :
forall test inner env mem1 mem2,
loop_semantics (make_guard test inner) env mem1 mem2 <->
(if eval_test env test then loop_semantics inner env mem1 mem2 else mem1 = mem2).
Proof.
intros test inner env mem1 mem2.
split.
- destruct (eval_test env test) eqn:Htest.
+ unfold make_guard; intros H; destruct test; simpl;
try (inversion_clear H; congruence).
simpl in *. rewrite Htest in H. auto.
+ unfold make_guard; intros H; destruct test; simpl;
try (inversion_clear H; congruence).
simpl in *. rewrite Htest in H. inversion_clear H; auto.
- destruct (eval_test env test) eqn:Htest.
+ unfold make_guard; intros H; destruct test; simpl;
try (apply LGuardTrue; auto).
simpl in Htest; rewrite Htest; auto.
+ unfold make_guard; intros H; destruct test; simpl; rewrite H;
try (apply LGuardFalse; auto).
simpl in Htest; rewrite Htest; auto.
constructor; auto.
Qed.
Definition make_let value inner :=
Loop value (Sum value (Constant 1)) inner.
Lemma make_let_correct :
forall value inner env mem1 mem2,
loop_semantics (make_let value inner) env mem1 mem2 <-> loop_semantics inner (eval_expr env value :: env) mem1 mem2.
Proof.
intros value inner env mem1 mem2.
split.
- unfold make_let. intros H; inversion_clear H.
simpl in H0. rewrite Zrange_single in H0.
inversion_clear H0. inversion H1. congruence.
- intros H. unfold make_let. constructor.
rewrite Zrange_single.
econstructor; [|econstructor]. auto.
Qed.