-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathword_embeddings.py
243 lines (216 loc) · 9.57 KB
/
word_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright (c) 2021, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import math
from torch.nn.parameter import Parameter
from megatron import mpu
from megatron.model.positional_embeddings import SinusoidalPositionalEmbedding
from megatron.model.init_functions import get_init_methods
class Embedding(torch.nn.Module):
"""Language model embeddings.
Arguments:
hidden_size: hidden size
vocab_size: vocabulary size
max_sequence_length: maximum size of sequence. This
is used for positional embedding
embedding_dropout_prob: dropout probability for embeddings
init_method: weight initialization method
num_tokentypes: size of the token-type embeddings. 0 value
will ignore this embedding
"""
def __init__(
self,
neox_args,
hidden_size,
vocab_size,
max_sequence_length,
embedding_dropout_prob,
init_method,
num_tokentypes=0,
use_pos_emb=True,
):
super(Embedding, self).__init__()
self.hidden_size = hidden_size
self.init_method = init_method
self.num_tokentypes = num_tokentypes
self.use_mup = neox_args.use_mup # TODO: as of now this will always be false
self.mup_embedding_mult = neox_args.mup_embedding_mult
self.mup_rp_embedding_mult = neox_args.mup_rp_embedding_mult
# Word embeddings (parallel).
self.word_embeddings = mpu.VocabParallelEmbedding(
neox_args=neox_args,
num_embeddings=vocab_size,
embedding_dim=self.hidden_size,
init_method=self.init_method,
)
self._word_embeddings_key = "word_embeddings"
if neox_args.use_bnb_optimizer:
try:
import bitsandbytes as bnb
self.embedding_module = bnb.nn.StableEmbedding
except ModuleNotFoundError:
print(
"Please install bitsandbytes following https://github.com/facebookresearch/bitsandbytes."
)
raise Exception
else:
self.embedding_module = torch.nn.Embedding
# Position embedding (serial).
self.use_pos_emb = use_pos_emb
if self.use_pos_emb:
self.embedding_type = neox_args.pos_emb
if self.embedding_type == "learned":
self.position_embeddings = self.embedding_module(
max_sequence_length, self.hidden_size
)
self._position_embeddings_key = "position_embeddings"
# Initialize the position embeddings.
self.init_method(self.position_embeddings.weight)
elif self.embedding_type == "sinusoidal":
self.position_embeddings = SinusoidalPositionalEmbedding(
self.hidden_size
)
# Token type embedding.
# Add this as an optional field that can be added through
# method call so we can load a pretrain model without
# token types and add them as needed.
self._tokentype_embeddings_key = "tokentype_embeddings"
if self.num_tokentypes > 0:
self.tokentype_embeddings = self.embedding_module(
self.num_tokentypes, self.hidden_size
)
# Initialize the token-type embeddings.
self.init_method(self.tokentype_embeddings.weight)
else:
self.tokentype_embeddings = None
# Embeddings dropout
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
self.opt_pos_emb_offset = neox_args.opt_pos_emb_offset
# For ticking position ids forward
self.layer_past = None
def add_tokentype_embeddings(self, num_tokentypes):
"""Add token-type embedding. This function is provided so we can add
token-type embeddings in case the pretrained model does not have it.
This allows us to load the model normally and then add this embedding.
"""
if self.tokentype_embeddings is not None:
raise Exception("tokentype embeddings is already initialized")
if torch.distributed.get_rank() == 0:
print(
"adding embedding for {} tokentypes".format(num_tokentypes), flush=True
)
self.num_tokentypes = num_tokentypes
self.tokentype_embeddings = self.embedding_module(
num_tokentypes, self.hidden_size
)
# Initialize the token-type embeddings.
self.init_method(self.tokentype_embeddings.weight)
def forward(self, input_ids, position_ids, tokentype_ids=None):
# Embeddings.
words_embeddings = self.word_embeddings(input_ids)
if self.use_pos_emb and self.embedding_type in ["learned", "sinusoidal"]:
if self.opt_pos_emb_offset:
if self.layer_past is not None:
position_ids = position_ids + self.layer_past + 1
self.layer_past = position_ids[:, -1]
# OPT always adds 2 for some reason, according to the HF implementation
position_ids = position_ids + self.opt_pos_emb_offset
position_embeddings = self.position_embeddings(position_ids)
position_embeddings.mul_(self.mup_rp_embedding_mult)
embeddings = words_embeddings + position_embeddings
else:
embeddings = words_embeddings
if tokentype_ids is not None:
assert self.tokentype_embeddings is not None
embeddings = embeddings + self.tokentype_embeddings(tokentype_ids)
else:
assert self.tokentype_embeddings is None
# Dropout.
embeddings = self.embedding_dropout(embeddings)
# TODO:
# not only this always false because of the way the model is initialized, but this also throws an error
# if self.use_mup:
# with torch.no_grad():
# embeddings.mul_(self.mup_embedding_mult)
return embeddings
class EmbeddingPipe(Embedding):
"""Extends Embedding to forward attention_mask through the pipeline."""
@property
def word_embeddings_weight(self):
"""Easy accessory for the pipeline engine to tie embeddings across stages."""
return self.word_embeddings.weight
def forward(self, args):
assert (
len(args) == 3
), f"Expected 3 arguments (input_ids, position_ids, attention_mask), but got {len(args)}."
input_ids = args[0]
position_ids = args[1]
attention_mask = args[2]
embeddings = super().forward(input_ids, position_ids)
return embeddings, attention_mask
class SoftEmbedding(torch.nn.Module):
def __init__(
self,
neox_args,
wte,
n_tokens: int = 10,
init_range: float = 0.5,
init_string: str = "",
):
super(SoftEmbedding, self).__init__()
self.n_tokens = n_tokens
self.neox_args = neox_args
self.init_range = init_range
self.init_string = init_string
self.soft_embedding_weight = torch.nn.parameter.Parameter(
self.initialize_embedding(wte)
)
def initialize_embedding(self):
if self.init_string:
embeds = torch.LongTensor(
self.neox_args.tokenizer.tokenize(self.init_string)
).to(self.embedding_module.weight.device)
embeds = self.embedding_module(embeds)
if embeds.shape[0] >= self.n_tokens:
embeds = embeds[: self.n_tokens, :] # slice
else:
embeds = embeds.repeat(math.ceil(self.n_tokens / embeds.shape[0]), 1)[
: self.n_tokens, :
] # pad up to n_tokens
return embeds
return torch.Tensor(n_tokens, neox_args.hidden_size).uniform_(
-self.random_range, self.random_range
)
def forward(self, args: tuple):
in_inference = len(args) == 3 # embeddings, layer_past, attention_mask
in_train = len(args) == 2 # embeddings, attention_mask
if in_train:
embedding, attention_mask = args
else:
embedding, layer_past, attention_mask = args
soft_embedding = self.soft_embedding_weight.repeat(
embedding.shape[0], 1, 1
) # repeat batch_size times
if in_train:
# append soft embedding at the beginning in training
embedding = torch.cat((soft_embedding, embedding), dim=1)
embedding = embedding[:, : self.neox_args.seq_length, ...]
return embedding, attention_mask
else:
if not (exists(layer_past) and layer_past.numel() > 0):
# if in inference, on the first forward pass, we want to do the same as in training (append soft embedding)
embedding = torch.cat((soft_embedding, embedding), dim=1)
embedding = embedding[:, : self.neox_args.seq_length, ...]
# otherwise, we're in incremental mode, and just want to forward the single embedding (since the soft prompt has already been cached)
return embedding, layer_past, attention_mask