|
| 1 | +from typing import Union, Tuple |
| 2 | + |
| 3 | +from torch.utils.data import random_split, DataLoader |
| 4 | +from torchvision.datasets import MNIST, CIFAR10 |
| 5 | +from torchvision.transforms import ToTensor, Normalize, Compose |
| 6 | + |
| 7 | + |
| 8 | +def get_mnist_loader( |
| 9 | + train: bool, |
| 10 | + batch_size: int, |
| 11 | + normalize: bool = True, |
| 12 | + data_path: str = "./data", |
| 13 | + shuffle: bool = True, |
| 14 | + num_workers: int = 1 |
| 15 | +) -> Union[DataLoader, Tuple[DataLoader, DataLoader]]: |
| 16 | + transforms = [ |
| 17 | + ToTensor() |
| 18 | + ] |
| 19 | + |
| 20 | + if normalize: |
| 21 | + transforms.append( |
| 22 | + Normalize((0.1307,), (0.3081,)) |
| 23 | + ) |
| 24 | + |
| 25 | + transform = Compose(transforms) |
| 26 | + |
| 27 | + if train: |
| 28 | + dataset = MNIST(data_path, train=True, transform=transform, download=True) |
| 29 | + train_dataset, val_dataset = random_split(dataset, [50_000, 10_000]) |
| 30 | + train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=shuffle, |
| 31 | + num_workers=num_workers) |
| 32 | + val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) |
| 33 | + return train_loader, val_loader |
| 34 | + |
| 35 | + else: |
| 36 | + test_dataset = MNIST(data_path, train=False, transform=transform, download=True) |
| 37 | + return DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) |
| 38 | + |
| 39 | + |
| 40 | +def get_cifar10_loader( |
| 41 | + train: bool, |
| 42 | + batch_size: int, |
| 43 | + normalize: bool = True, |
| 44 | + data_path: str = "./data", |
| 45 | + shuffle: bool = True, |
| 46 | + num_workers: int = 1 |
| 47 | +) -> Union[DataLoader, Tuple[DataLoader, DataLoader]]: |
| 48 | + transforms = [ |
| 49 | + ToTensor() |
| 50 | + ] |
| 51 | + |
| 52 | + if normalize: |
| 53 | + transforms.append( |
| 54 | + Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) |
| 55 | + ) |
| 56 | + |
| 57 | + transform = Compose(transforms) |
| 58 | + |
| 59 | + if train: |
| 60 | + dataset = CIFAR10(data_path, train=True, transform=transform, download=True) |
| 61 | + train_dataset, val_dataset = random_split(dataset, [42_000, 8_000]) |
| 62 | + train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=shuffle, |
| 63 | + num_workers=num_workers) |
| 64 | + val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) |
| 65 | + return train_loader, val_loader |
| 66 | + |
| 67 | + else: |
| 68 | + test_dataset = CIFAR10(data_path, train=False, transform=transform, download=True) |
| 69 | + return DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers |
| 70 | + ) |
0 commit comments