-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodeltraining.py
247 lines (178 loc) · 6.76 KB
/
modeltraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
from torch.utils.data import Dataset, DataLoader
import time
import os
import copy
import itertools
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import csv
import cv2
import numpy
import glob
import torchvision.transforms.functional as F
import pandas as pd
from torch.autograd import Variable
from PIL import Image
import matplotlib.patches as patches
from cv2 import VideoWriter, VideoWriter_fourcc
from PIL import ImageDraw
import scipy.io as sio
#####For google colab
from google.colab import drive
drive.mount('/content/drive',force_remount=True)
####
###################################################################
##HELPERS
def plot_graph(plotlist1,plotlist2,ylabel):
#Plot accuracy graph
plt.xlabel("Training Epochs")
plt.ylabel(ylabel)
plt.plot(plotlist1, color="green")
plt.plot(plotlist2, color="red")
plt.gca().legend(('Train', 'Validation'))
plt.show()
resnetmodel = models.resnet34(pretrained=True)
resnetmodel.fc = nn.Linear(2048,3)
print(resnetmodel)
###### Retrieving pose and 2d landmark informations
def obtain_2dmark_pose(mat_path):
mat = sio.loadmat(mat_path)
pt2d = mat['pt2d']
pre_pose = mat['Pose_Para'][0]
pose_params = pre_pose_params[:3]
return pt2d,pose
##################################################################
preprocess = transforms.Compose([
transforms.Resize(128),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
class Custom_dataset(Dataset):
def __init__(self, dataframe):
self.dataframe = dataframe
def __len__(self):
return len(self.dataframe)
def __getitem__(self, idx):
t0path = self.dataframe.iloc[idx, 0]
mat_path = self.dataframe.iloc[idx, 1]
img = Image.open(t0path)
# Crop the face loosely
pt2d ,pose = obtain_2dmark_pose(mat_path)
x_min = min(pt2d[0,:])
y_min = min(pt2d[1,:])
x_max = max(pt2d[0,:])
y_max = max(pt2d[1,:])
# k = 0.25 to 0.40
k = np.random.random_sample() * 0.2 + 0.2
x_min -= 0.6 * k * abs(x_max - x_min)
y_min -= 2 * k * abs(y_max - y_min)
x_max += 0.6 * k * abs(x_max - x_min)
y_max += 0.6 * k * abs(y_max - y_min)
img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
# We get the pose in radians
# And convert to degrees.
pitch = pose[0] * 180 / np.pi
yaw = pose[1] * 180 / np.pi
roll = pose[2] * 180 / np.pi
poses = torch.FloatTensor([yaw, pitch, roll])
t0tensor = preprocess(img).float()
t0tensor = t0tensor.squeeze()
t0Var = Variable(t0tensor)
inputs = t0Var
outputs = poses
return (inputs, outputs)
csv_train = pd.read_csv("train.csv")
val_train = pd.read_csv("val.csv")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
valdataset = Custom_dataset(val_train)
valloader = torch.utils.data.DataLoader(valdataset, batch_size=64, shuffle=True, num_workers=4)
traindataset = Custom_dataset(csv_train)
trainloader = torch.utils.data.DataLoader(traindataset, batch_size=64, shuffle=True, num_workers=4)
datasetloaders = {'train': trainloader, 'val': valloader}
print(len(traindataset))
print(len(valdataset))
def regressionnetworktrain(mmodel,criterion,optimizer,dataloaders,epoch_number,device):
mmodel.to(device)
best_model_wts = copy.deepcopy(mmodel.state_dict())
best_train_loss = np.Inf
train_loss_history =list()
best_val_loss = np.Inf
val_loss_history =list()
for epoch in range(epoch_number):
print('Epoch {}/{}'.format(epoch, epoch_number - 1))
# Each epoch has a training and validation phase
for part in ['train', 'val']:
current_loss = 0.0
if part == 'train':
mmodel.train()
else:
mmodel.eval()
# For each phase in datasets are iterated
for inputs,outputs in dataloaders[part]:
inputs = inputs.to(device)
outputs = outputs.to(device)
preds = mmodel(inputs)
# zero the parameter gradients
optimizer.zero_grad()
# forward
loss = criterion(preds, outputs)
# Backpropagate and opitimize Training part
if part == 'train':
loss.backward()
optimizer.step()
# statistics
current_loss += loss.item() * inputs.size(0)
current_loss = current_loss /dataset_sizes[part]
if part == 'val':
val_loss_history.append(current_loss)
else:
train_loss_history.append(current_loss)
print('{} Loss: {:.4f} : '.format(
part, current_loss))
# deep copy the model
if part == 'train' and current_loss < best_train_loss:
best_train_loss = current_loss
if part == 'val' and current_loss < best_val_loss:
best_val_loss = current_loss
best_model_wts = copy.deepcopy(mmodel.state_dict())
print()
print('Best train Loss: {:.4f} : '.format(best_train_loss))
print('Best val Loss: {:.4f} : '.format(best_val_loss))
# load best model weights
mmodel.load_state_dict(best_model_wts)
#Plot accuracy graph
plot_graph(train_loss_history,val_loss_history,"Loss")
return mmodel
resnetmodel = models.resnet34(pretrained = True)
class myNetwork(nn.Module):
def __init__(self):
super(myNetwork, self).__init__()
self.classifier = nn.Sequential(
nn.Linear(512, 256),
nn.LeakyReLU(inplace=True),
nn.Dropout(),
nn.Linear(256, 3),
)
def forward(self, x):
x = x.view(-1, 512)
x = self.classifier(x)
return x
resnetmodel.fc = myNetwork()
learning_rate = 0.0001
epoch =20
criterion = nn.L1Loss()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dataset_sizes = {'train': len(traindataset), 'val': len(valdataset)}
optimizer = optim.Adam(resnetmodel.parameters(), lr=learning_rate,weight_decay=0.005)
trained_model = regressionnetworktrain(resnetmodel, criterion, optimizer,datasetloaders,epoch,device)