-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathTSConformal3D.h
1554 lines (1179 loc) · 46.4 KB
/
TSConformal3D.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// This file is part of the Terathon Math Library, by Eric Lengyel.
// Copyright 1999-2024, Terathon Software LLC
//
// This software is distributed under the MIT License.
// Separate proprietary licenses are available from Terathon Software.
//
#ifndef TSConformal3D_h
#define TSConformal3D_h
#include "TSRigid3D.h"
#define TERATHON_ROUNDPOINT3D 1
#define TERATHON_DIPOLE3D 1
#define TERATHON_CIRCLE3D 1
#define TERATHON_SPHERE3D 1
namespace Terathon
{
struct ConstRoundPoint3D;
struct ConstDipole3D;
struct ConstCircle3D;
struct ConstSphere3D;
// ==============================================
// RoundPoint3D
// ==============================================
/// @brief Encapsulates a 3D <a href="https://conformalgeometricalgebra.org/wiki/index.php?title=Round_point">round point</a> in conformal geometric algebra.
///
/// The \c RoundPoint3D class is used to store a three-dimensional round point with a five-dimensional vector representation in conformal geometric algebra.
///
/// @sa Dipole3D
/// @sa Circle3D
/// @sa Sphere3D
class RoundPoint3D
{
public:
float x, y, z, w, u;
TERATHON_API static const ConstRoundPoint3D zero;
/// @brief Default constructor that leaves the components uninitialized.
inline RoundPoint3D() = default;
/// @brief Constructor that sets components explicitly.
/// @param ax,ay,az,aw,au The components of the round point.
RoundPoint3D(float ax, float ay, float az, float aw, float au)
{
x = ax;
y = ay;
z = az;
w = aw;
u = au;
}
/// @brief Constructor that converts a Euclidean point to a round point.
/// @param p The Euclidean point to convert. The \e w component of the round point is set to 1.0, and the \e u component is set to (<i>x</i><sup>2</sup> + <i>y</i><sup>2</sup> + <i>z</i><sup>2</sup>) / 2.
RoundPoint3D(const Point3D& p)
{
x = p.x;
y = p.y;
z = p.z;
w = 1.0F;
u = (p.x * p.x + p.y * p.y + p.z * p.z) * 0.5F;
}
/// @brief Sets all five components of a 3D round point.
/// @param ax,ay,az,aw,au The new components of the round point.
RoundPoint3D& Set(float ax, float ay, float az, float aw, float au)
{
x = ax;
y = ay;
z = az;
w = aw;
u = au;
return (*this);
}
void Set(float ax, float ay, float az, float aw, float au) volatile
{
x = ax;
y = ay;
z = az;
w = aw;
u = au;
}
/// @brief Returns a reference to a scalar component of a 3D round point.
/// @param k The index of the component. Must be 0, 1, 2, 3, or 4.
float& operator [](machine k)
{
return ((&x)[k]);
}
const float& operator [](machine k) const
{
return ((&x)[k]);
}
RoundPoint3D& operator *=(float n)
{
x *= n;
y *= n;
z *= n;
w *= n;
u *= n;
return (*this);
}
RoundPoint3D& operator /=(float n)
{
n = 1.0F / n;
x *= n;
y *= n;
z *= n;
w *= n;
u *= n;
return (*this);
}
RoundPoint3D& Unitize(void)
{
float n = 1.0F / w;
x *= n;
y *= n;
z *= n;
u *= n;
w = 1.0F;
return (*this);
}
};
/// @brief Returns the negation of the 3D round point \c a.
/// @related RoundPoint3D
inline RoundPoint3D operator -(const RoundPoint3D& a)
{
return (RoundPoint3D(-a.x, -a.y, -a.z, -a.w, -a.u));
}
/// @brief Returns the product of the 3D round point \c a and the scalar \c n.
/// @related RoundPoint3D
inline RoundPoint3D operator *(const RoundPoint3D& a, float n)
{
return (RoundPoint3D(a.x * n, a.y * n, a.z * n, a.w * n, a.u * n));
}
/// @brief Returns the product of the 3D round point \c a and the scalar \c n.
/// @related RoundPoint3D
inline RoundPoint3D operator *(float n, const RoundPoint3D& a)
{
return (RoundPoint3D(n * a.x, n * a.y, n * a.z, n * a.w, n * a.u));
}
/// @brief Returns the product of the 3D round point \c a and the inverse of the scalar \c n.
/// @related RoundPoint3D
inline RoundPoint3D operator /(const RoundPoint3D& a, float n)
{
n = 1.0F / n;
return (RoundPoint3D(a.x * n, a.y * n, a.z * n, a.w * n, a.u * n));
}
/// @brief Returns a boolean value indicating whether the two 3D round points \c a and \c b are equal.
/// @related RoundPoint3D
inline bool operator ==(const RoundPoint3D& a, const RoundPoint3D& b)
{
return ((a.x == b.x) && (a.y == b.y) && (a.z == b.z) && (a.w == b.w) && (a.u == b.u));
}
/// @brief Returns a boolean value indicating whether the two 3D round points \c a and \c b are not equal.
/// @related RoundPoint3D
inline bool operator !=(const RoundPoint3D& a, const RoundPoint3D& b)
{
return ((a.x != b.x) || (a.y != b.y) || (a.z != b.z) || (a.w != b.w) || (a.u != b.u));
}
// ==============================================
// Dipole3D
// ==============================================
/// @brief Encapsulates a 3D <a href="https://conformalgeometricalgebra.org/wiki/index.php?title=Dipole">dipole</a> in conformal geometric algebra.
///
/// The \c Dipole3D class is used to store a three-dimensional dipole with a five-dimensional bivector representation in conformal geometric algebra.
///
/// @sa RoundPoint3D
/// @sa Circle3D
/// @sa Sphere3D
class Dipole3D
{
public:
Vector3D v;
Bivector3D m;
FlatPoint3D p;
TERATHON_API static const ConstDipole3D zero;
/// @brief Default constructor that leaves the components uninitialized.
inline Dipole3D() = default;
/// @brief Constructor that sets components explicitly.
/// @param vx,vy,vz The components of the dipole corresponding to the <b>e</b><sub>41</sub>, <b>e</b><sub>42</sub>, and <b>e</b><sub>43</sub> basis elements.
/// @param mx,my,mz The components of the dipole corresponding to the <b>e</b><sub>23</sub>, <b>e</b><sub>31</sub>, and <b>e</b><sub>12</sub> basis elements.
/// @param px,py,pz,pw The components of the dipole corresponding to the <b>e</b><sub>15</sub>, <b>e</b><sub>25</sub>, <b>e</b><sub>35</sub>, and <b>e</b><sub>45</sub> basis elements.
Dipole3D(float vx, float vy, float vz, float mx, float my, float mz, float px, float py, float pz, float pw)
{
v.Set(vx, vy, vz);
m.Set(mx, my, mz);
p.Set(px, py, pz, pw);
}
/// @brief Constructor that sets components explicitly.
/// @param direction The direction of the carrier line.
/// @param moment The moment of the carrier line.
/// @param point The flat point component.
Dipole3D(const Vector3D& direction, const Bivector3D& moment, const FlatPoint3D& point)
{
v = direction;
m = moment;
p = point;
}
/// @brief Sets all ten components of a 3D dipole.
/// @param vx,vy,vz The components of the dipole corresponding to the <b>e</b><sub>41</sub>, <b>e</b><sub>42</sub>, and <b>e</b><sub>43</sub> basis elements.
/// @param mx,my,mz The components of the dipole corresponding to the <b>e</b><sub>23</sub>, <b>e</b><sub>31</sub>, and <b>e</b><sub>12</sub> basis elements.
/// @param px,py,pz,pw The components of the dipole corresponding to the <b>e</b><sub>15</sub>, <b>e</b><sub>25</sub>, <b>e</b><sub>35</sub>, and <b>e</b><sub>45</sub> basis elements.
Dipole3D& Set(float vx, float vy, float vz, float mx, float my, float mz, float px, float py, float pz, float pw)
{
v.Set(vx, vy, vz);
m.Set(mx, my, mz);
p.Set(px, py, pz, pw);
return (*this);
}
void Set(float vx, float vy, float vz, float mx, float my, float mz, float px, float py, float pz, float pw) volatile
{
v.Set(vx, vy, vz);
m.Set(mx, my, mz);
p.Set(px, py, pz, pw);
}
/// @brief Sets all ten components of a 3D dipole.
/// @param direction The direction of the carrier line.
/// @param moment The moment of the carrier line.
/// @param point The flat point component.
Dipole3D& Set(const Vector3D& direction, const Bivector3D& moment, const FlatPoint3D& point)
{
v = direction;
m = moment;
p = point;
return (*this);
}
void Set(const Vector3D& direction, const Bivector3D& moment, const FlatPoint3D& point) volatile
{
v = direction;
m = moment;
p = point;
}
Dipole3D& operator *=(float n)
{
v *= n;
m *= n;
p *= n;
return (*this);
}
Dipole3D& operator /=(float n)
{
n = 1.0F / n;
v *= n;
m *= n;
p *= n;
return (*this);
}
Dipole3D& Unitize(void)
{
return (*this *= InverseMag(v));
}
};
/// @brief Returns the negation of the 3D dipole \c d.
/// @related Dipole3D
inline Dipole3D operator -(const Dipole3D& d)
{
return (Dipole3D(-d.v.x, -d.v.y, -d.v.z, -d.m.x, -d.m.y, -d.m.z, -d.p.x, -d.p.y, -d.p.z, -d.p.w));
}
/// @brief Returns the product of the 3D dipole \c d and the scalar \c n.
/// @related Dipole3D
inline Dipole3D operator *(const Dipole3D& d, float n)
{
return (Dipole3D(d.v.x * n, d.v.y * n, d.v.z * n, d.m.x * n, d.m.y * n, d.m.z * n, d.p.x * n, d.p.y * n, d.p.z * n, d.p.w * n));
}
/// @brief Returns the product of the 3D dipole \c d and the scalar \c n.
/// @related Dipole3D
inline Dipole3D operator *(float n, const Dipole3D& d)
{
return (Dipole3D(n * d.v.x, n * d.v.y, n * d.v.z, n * d.m.x, n * d.m.y, n * d.m.z, n * d.p.x, n * d.p.y, n * d.p.z, n * d.p.w));
}
/// @brief Returns the product of the 3D dipole \c d and the inverse of the scalar \c n.
/// @related Dipole3D
inline Dipole3D operator /(const Dipole3D& d, float n)
{
n = 1.0F / n;
return (Dipole3D(d.v.x * n, d.v.y * n, d.v.z * n, d.m.x * n, d.m.y * n, d.m.z * n, d.p.x * n, d.p.y * n, d.p.z * n, d.p.w * n));
}
/// @brief Returns a boolean value indicating whether the two 3D dipoles \c d and \c f are equal.
/// @related Dipole3D
inline bool operator ==(const Dipole3D& d, const Dipole3D& f)
{
return ((d.v == f.v) && (d.m == f.m) && (d.p == f.p));
}
/// @brief Returns a boolean value indicating whether the two 3D dipoles \c d and \c f are not equal.
/// @related Dipole3D
inline bool operator !=(const Dipole3D& d, const Dipole3D& f)
{
return ((d.v != f.v) || (d.m != f.m) || (d.p != f.p));
}
// ==============================================
// Circle3D
// ==============================================
/// @brief Encapsulates a 3D <a href="https://conformalgeometricalgebra.org/wiki/index.php?title=Circle">circle</a> in conformal geometric algebra.
///
/// The \c Circle3D class is used to store a three-dimensional circle with a five-dimensional trivector representation in conformal geometric algebra.
///
/// @sa RoundPoint3D
/// @sa Dipole3D
/// @sa Sphere3D
class Circle3D
{
public:
Plane3D g;
Vector3D v;
Bivector3D m;
TERATHON_API static const ConstCircle3D zero;
/// @brief Default constructor that leaves the components uninitialized.
inline Circle3D() = default;
/// @brief Constructor that sets components explicitly.
/// @param gx,gy,gz,gw The components of the circle corresponding to the <b>e</b><sub>423</sub>, <b>e</b><sub>431</sub>, <b>e</b><sub>412</sub>, and <b>e</b><sub>321</sub> basis elements.
/// @param vx,vy,vz The components of the circle corresponding to the <b>e</b><sub>415</sub>, <b>e</b><sub>425</sub>, and <b>e</b><sub>435</sub> basis elements.
/// @param mx,my,mz The components of the circle corresponding to the <b>e</b><sub>235</sub>, <b>e</b><sub>315</sub>, and <b>e</b><sub>125</sub> basis elements.
Circle3D(float gx, float gy, float gz, float gw, float vx, float vy, float vz, float mx, float my, float mz)
{
g.Set(gx, gy, gz, gw);
v.Set(vx, vy, vz);
m.Set(mx, my, mz);
}
/// @brief Constructor that sets components explicitly.
/// @param plane The carrier plane.
/// @param direction The direction of the flat line component.
/// @param moment The moment of the flat line component.
Circle3D(const Plane3D& plane, const Vector3D& direction, const Bivector3D& moment)
{
g = plane;
v = direction;
m = moment;
}
/// @brief Sets all ten components of a 3D circle.
/// @param gx,gy,gz,gw The components of the circle corresponding to the <b>e</b><sub>423</sub>, <b>e</b><sub>431</sub>, <b>e</b><sub>412</sub>, and <b>e</b><sub>321</sub> basis elements.
/// @param vx,vy,vz The components of the circle corresponding to the <b>e</b><sub>415</sub>, <b>e</b><sub>425</sub>, and <b>e</b><sub>435</sub> basis elements.
/// @param mx,my,mz The components of the circle corresponding to the <b>e</b><sub>235</sub>, <b>e</b><sub>315</sub>, and <b>e</b><sub>125</sub> basis elements.
Circle3D& Set(float gx, float gy, float gz, float gw, float vx, float vy, float vz, float mx, float my, float mz)
{
g.Set(gx, gy, gz, gw);
v.Set(vx, vy, vz);
m.Set(mx, my, mz);
return (*this);
}
void Set(float gx, float gy, float gz, float gw, float vx, float vy, float vz, float mx, float my, float mz) volatile
{
g.Set(gx, gy, gz, gw);
v.Set(vx, vy, vz);
m.Set(mx, my, mz);
}
/// @brief Sets all ten components of a 3D circle.
/// @param plane The carrier plane.
/// @param direction The direction of the flat line component.
/// @param moment The moment of the flat line component.
Circle3D& Set(const Plane3D& plane, const Vector3D& direction, const Bivector3D& moment)
{
g = plane;
v = direction;
m = moment;
return (*this);
}
void Set(const Plane3D& plane, const Vector3D& direction, const Bivector3D& moment) volatile
{
g = plane;
v = direction;
m = moment;
}
Circle3D& operator *=(float n)
{
g *= n;
v *= n;
m *= n;
return (*this);
}
Circle3D& operator /=(float n)
{
n = 1.0F / n;
g *= n;
v *= n;
m *= n;
return (*this);
}
Circle3D& Unitize(void)
{
return (*this *= InverseSqrt(g.x * g.x + g.y * g.y + g.z * g.z));
}
};
/// @brief Returns the negation of the 3D circle \c c.
/// @related Circle3D
inline Circle3D operator -(const Circle3D& c)
{
return (Circle3D(-c.g.x, -c.g.y, -c.g.z, -c.g.w, -c.v.x, -c.v.y, -c.v.z, -c.m.x, -c.m.y, -c.m.z));
}
/// @brief Returns the product of the 3D circle \c c and the scalar \c n.
/// @related Circle3D
inline Circle3D operator *(const Circle3D& c, float n)
{
return (Circle3D(c.g.x * n, c.g.y * n, c.g.z * n, c.g.w * n, c.v.x * n, c.v.y * n, c.v.z * n, c.m.x * n, c.m.y * n, c.m.z * n));
}
/// @brief Returns the product of the 3D circle \c c and the scalar \c n.
/// @related Circle3D
inline Circle3D operator *(float n, const Circle3D& c)
{
return (Circle3D(n * c.g.x, n * c.g.y, n * c.g.z, n * c.g.w, n * c.v.x, n * c.v.y, n * c.v.z, n * c.m.x, n * c.m.y, n * c.m.z));
}
/// @brief Returns the product of the 3D circle \c c and the inverse of the scalar \c n.
/// @related Circle3D
inline Circle3D operator /(const Circle3D& c, float n)
{
n = 1.0F / n;
return (Circle3D(c.g.x * n, c.g.y * n, c.g.z * n, c.g.w * n, c.v.x * n, c.v.y * n, c.v.z * n, c.m.x * n, c.m.y * n, c.m.z * n));
}
/// @brief Returns a boolean value indicating whether the two 3D circles \c c and \c o are equal.
/// @related Circle3D
inline bool operator ==(const Circle3D& c, const Circle3D& o)
{
return ((c.g == o.g) && (c.v == o.v) && (c.m == o.m));
}
/// @brief Returns a boolean value indicating whether the two 3D circles \c c and \c o are not equal.
/// @related Circle3D
inline bool operator !=(const Circle3D& c, const Circle3D& o)
{
return ((c.g != o.g) || (c.v != o.v) || (c.m != o.m));
}
// ==============================================
// Sphere3D
// ==============================================
/// @brief Encapsulates a 3D <a href="https://conformalgeometricalgebra.org/wiki/index.php?title=Sphere">sphere</a> in conformal geometric algebra.
///
/// The \c Sphere3D class is used to store a three-dimensional sphere with a five-dimensional quadrivector representation in conformal geometric algebra.
///
/// @sa RoundPoint3D
/// @sa Dipole3D
/// @sa Circle3D
class Sphere3D
{
public:
float u, x, y, z, w;
TERATHON_API static const ConstSphere3D zero;
/// @brief Default constructor that leaves the components uninitialized.
inline Sphere3D() = default;
/// @brief Constructor that sets components explicitly.
/// @param su,sx,sy,sz,sw The components of the sphere.
Sphere3D(float su, float sx, float sy, float sz, float sw)
{
u = su;
x = sx;
y = sy;
z = sz;
w = sw;
}
/// @brief Sets all five components of a 3D sphere.
/// @param su,sx,sy,sz,sw The new components of the sphere.
Sphere3D& Set(float su, float sx, float sy, float sz, float sw)
{
u = su;
x = sx;
y = sy;
z = sz;
w = sw;
return (*this);
}
void Set(float su, float sx, float sy, float sz, float sw) volatile
{
u = su;
x = sx;
y = sy;
z = sz;
w = sw;
}
Sphere3D& operator *=(float n)
{
u *= n;
x *= n;
y *= n;
z *= n;
w *= n;
return (*this);
}
Sphere3D& operator /=(float n)
{
n = 1.0F / n;
u *= n;
x *= n;
y *= n;
z *= n;
w *= n;
return (*this);
}
Sphere3D& Unitize(void)
{
float n = -1.0F / u;
x *= n;
y *= n;
z *= n;
w *= n;
u = -1.0F;
return (*this);
}
};
/// @brief Returns the negation of the 3D sphere \c s.
/// @related Sphere3D
inline Sphere3D operator -(const Sphere3D& s)
{
return (Sphere3D(-s.u, -s.x, -s.y, -s.z, -s.w));
}
/// @brief Returns the product of the 3D sphere \c s and the scalar \c n.
/// @related Sphere3D
inline Sphere3D operator *(const Sphere3D& s, float n)
{
return (Sphere3D(s.u * n, s.x * n, s.y * n, s.z * n, s.w * n));
}
/// @brief Returns the product of the 3D sphere \c s and the scalar \c n.
/// @related Sphere3D
inline Sphere3D operator *(float n, const Sphere3D& s)
{
return (Sphere3D(n * s.u, n * s.x, n * s.y, n * s.z, n * s.w));
}
/// @brief Returns the product of the 3D sphere \c s and the inverse of the scalar \c n.
/// @related Sphere3D
inline Sphere3D operator /(const Sphere3D& s, float n)
{
n = 1.0F / n;
return (Sphere3D(s.u * n, s.x * n, s.y * n, s.z * n, s.w * n));
}
/// @brief Returns a boolean value indicating whether the two 3D spheres \c s and \c t are equal.
/// @related Sphere3D
inline bool operator ==(const Sphere3D& s, const Sphere3D& t)
{
return ((s.u == t.u) && (s.x == t.x) && (s.y == t.y) && (s.z == t.z) && (s.w == t.w));
}
/// @brief Returns a boolean value indicating whether the two 3D spheres \c s and \c t are not equal.
/// @related Sphere3D
inline bool operator !=(const Sphere3D& s, const Sphere3D& t)
{
return ((s.u != t.u) || (s.x != t.x) || (s.y != t.y) || (s.z != t.z) || (s.w != t.w));
}
// ==============================================
// Dual
// ==============================================
/// @brief Returns the dual of the 3D round point \c a, which is a 3D sphere.
/// @relatedalso RoundPoint3D
inline Sphere3D Dual(const RoundPoint3D& a)
{
return (Sphere3D(-a.w, a.x, a.y, a.z, -a.u));
}
/// @brief Returns the dual of the 3D dipole \c d, which is a 3D circle.
/// @relatedalso Dipole3D
inline Circle3D Dual(const Dipole3D& d)
{
return (Circle3D(-d.v.x, -d.v.y, -d.v.z, d.p.w, -d.m.x, -d.m.y, -d.m.z, -d.p.x, -d.p.y, -d.p.z));
}
/// @brief Returns the dual of the 3D circle \c c, which is a 3D dipole.
/// @relatedalso Circle3D
inline Dipole3D Dual(const Circle3D& c)
{
return (Dipole3D(c.g.x, c.g.y, c.g.z, c.v.x, c.v.y, c.v.z, c.m.x, c.m.y, c.m.z, -c.g.w));
}
/// @brief Returns the dual of the 3D sphere \c s, which is a 3D round point.
/// @relatedalso Sphere3D
inline RoundPoint3D Dual(const Sphere3D& s)
{
return (RoundPoint3D(-s.x, -s.y, -s.z, s.u, s.w));
}
// ==============================================
// Antidual
// ==============================================
/// @brief Returns the antidual of the 3D round point \c a, which is a 3D sphere.
/// @relatedalso RoundPoint3D
inline Sphere3D Antidual(const RoundPoint3D& a)
{
return (Sphere3D(a.w, -a.x, -a.y, -a.z, a.u));
}
/// @brief Returns the antidual of the 3D dipole \c d, which is a 3D circle.
/// @relatedalso Dipole3D
inline Circle3D Antidual(const Dipole3D& d)
{
return (Circle3D(d.v.x, d.v.y, d.v.z, -d.p.w, d.m.x, d.m.y, d.m.z, d.p.x, d.p.y, d.p.z));
}
/// @brief Returns the antidual of the 3D circle \c c, which is a 3D dipole.
/// @relatedalso Circle3D
inline Dipole3D Antidual(const Circle3D& c)
{
return (Dipole3D(-c.g.x, -c.g.y, -c.g.z, -c.v.x, -c.v.y, -c.v.z, -c.m.x, -c.m.y, -c.m.z, c.g.w));
}
/// @brief Returns the antidual of the 3D sphere \c s, which is a 3D round point.
/// @relatedalso Sphere3D
inline RoundPoint3D Antidual(const Sphere3D& s)
{
return (RoundPoint3D(s.x, s.y, s.z, -s.u, -s.w));
}
// ==============================================
// Reverse
// ==============================================
/// @brief Returns the reverse of the 3D round point \c a.
/// @relatedalso RoundPoint3D
inline const RoundPoint3D& Reverse(const RoundPoint3D& a)
{
return (a);
}
/// @brief Returns the reverse of the 3D dipole \c d.
/// @relatedalso Dipole3D
inline Dipole3D Reverse(const Dipole3D& d)
{
return (Dipole3D(-d.v.x, -d.v.y, -d.v.z, -d.m.x, -d.m.y, -d.m.z, -d.p.x, -d.p.y, -d.p.z, -d.p.w));
}
/// @brief Returns the reverse of the 3D circle \c c.
/// @relatedalso Circle3D
inline Circle3D Reverse(const Circle3D& c)
{
return (Circle3D(-c.g.x, -c.g.y, -c.g.z, -c.g.w, -c.v.x, -c.v.y, -c.v.z, -c.m.x, -c.m.y, -c.m.z));
}
/// @brief Returns the reverse of the 3D sphere \c s.
/// @relatedalso Sphere3D
inline const Sphere3D& Reverse(const Sphere3D& s)
{
return (s);
}
inline const RoundPoint3D& operator ~(const RoundPoint3D& a) {return (Reverse(a));}
inline Dipole3D operator ~(const Dipole3D& d) {return (Reverse(d));}
inline Circle3D operator ~(const Circle3D& c) {return (Reverse(c));}
inline const Sphere3D& operator ~(const Sphere3D& s) {return (Reverse(s));}
// ==============================================
// Attitude
// ==============================================
/// @brief Returns the attitude of the 3D round point \c a, which is a scalar.
/// @relatedalso RoundPoint3D
inline float Attitude(const RoundPoint3D& a)
{
return (a.w);
}
/// @brief Returns the attitude of the 3D dipole \c d, which is a 3D round point.
/// @relatedalso Dipole3D
inline RoundPoint3D Attitude(const Dipole3D& d)
{
return (RoundPoint3D(d.v.x, d.v.y, d.v.z, 0.0F, d.p.w));
}
/// @brief Returns the attitude of the 3D circle \c c, which is a 3D dipole.
/// @relatedalso Circle3D
inline Dipole3D Attitude(const Circle3D& c)
{
return (Dipole3D(0.0F, 0.0F, 0.0F, c.g.x, c.g.y, c.g.z, c.v.x, c.v.y, c.v.z, 0.0F));
}
/// @brief Returns the attitude of the 3D sphere \c s, which is a 3D circle.
/// @relatedalso Sphere3D
inline Circle3D Attitude(const Sphere3D& s)
{
return (Circle3D(0.0F, 0.0F, 0.0F, s.u, 0.0F, 0.0F, 0.0F, s.x, s.y, s.z));
}
// ==============================================
// Carrier
// ==============================================
/// @brief Returns the carrier of the 3D round point \c a, which is a 3D flat point.
/// @relatedalso RoundPoint3D
inline FlatPoint3D Carrier(const RoundPoint3D& a)
{
return (FlatPoint3D(a.x, a.y, a.z, a.w));
}
/// @brief Returns the carrier of the 3D dipole \c d, which is a 3D line.
/// @relatedalso Dipole3D
inline Line3D Carrier(const Dipole3D& d)
{
return (Line3D(d.v, d.m));
}
/// @brief Returns the carrier of the 3D circle \c c, which is a 3D plane.
/// @relatedalso Circle3D
inline Plane3D Carrier(const Circle3D& c)
{
return (c.g);
}
// ==============================================
// Cocarrier
// ==============================================
/// @brief Returns the cocarrier of the 3D dipole \c d, which is a 3D plane.
/// @relatedalso Dipole3D
inline Plane3D Cocarrier(const Dipole3D& d)
{
return (Plane3D(d.v.x, d.v.y, d.v.z, -d.p.w));
}
/// @brief Returns the cocarrier of the 3D circle \c c, which is a 3D line.
/// @relatedalso Circle3D
inline Line3D Cocarrier(const Circle3D& c)
{
return (Line3D(-c.v.x, -c.v.y, -c.v.z, -c.g.x, -c.g.y, -c.g.z));
}
/// @brief Returns the cocarrier of the 3D sphere \c s, which is a 3D flat point.
/// @relatedalso Sphere3D
inline FlatPoint3D Cocarrier(const Sphere3D& s)
{
return (FlatPoint3D(s.x, s.y, s.z, -s.u));
}
// ==============================================
// Center
// ==============================================
/// @brief Returns the center of the 3D round point \c a.
/// @relatedalso RoundPoint3D
inline RoundPoint3D Center(const RoundPoint3D& a)
{
return (RoundPoint3D(a.x * a.w, a.y * a.w, a.z * a.w, a.w * a.w, a.w * a.u));
}
/// @brief Returns the center of the 3D dipole \c d.
/// @relatedalso Dipole3D
TERATHON_API RoundPoint3D Center(const Dipole3D& d);
/// @brief Returns the center of the 3D circle \c c.
/// @relatedalso Circle3D
TERATHON_API RoundPoint3D Center(const Circle3D& c);
/// @brief Returns the center of the 3D sphere \c s.
/// @relatedalso Sphere3D
inline RoundPoint3D Center(const Sphere3D& s)
{
return (RoundPoint3D(-s.x * s.u, -s.y * s.u, -s.z * s.u, s.u * s.u, s.x * s.x + s.y * s.y + s.z * s.z - s.w * s.u));
}
// ==============================================
// FlatCenter
// ==============================================
/// @brief Returns the flat center of the 3D round point \c a.
/// @relatedalso RoundPoint3D
inline FlatPoint3D FlatCenter(const RoundPoint3D& a)
{
return (FlatPoint3D(a.x, a.y, a.z, a.w));
}
/// @brief Returns the flat center of the 3D dipole \c d.
/// @relatedalso Dipole3D
TERATHON_API FlatPoint3D FlatCenter(const Dipole3D& d);
/// @brief Returns the flat center of the 3D circle \c c.
/// @relatedalso Circle3D
TERATHON_API FlatPoint3D FlatCenter(const Circle3D& c);
/// @brief Returns the flat center of the 3D sphere \c s.
/// @relatedalso Sphere3D
inline FlatPoint3D FlatCenter(const Sphere3D& s)
{
return (FlatPoint3D(s.x, s.y, s.z, -s.u));
}
// ==============================================
// Container
// ==============================================
/// @brief Returns the container of the 3D round point \c a.
/// @relatedalso RoundPoint3D
inline Sphere3D Container(const RoundPoint3D& a)
{
return (Sphere3D(-a.w * a.w, a.x * a.w, a.y * a.w, a.z * a.w, a.w * a.u - a.x * a.x - a.y * a.y - a.z * a.z));
}
/// @brief Returns the container of the 3D dipole \c d.
/// @relatedalso Dipole3D
TERATHON_API Sphere3D Container(const Dipole3D& d);
/// @brief Returns the container of the 3D circle \c c.
/// @relatedalso Circle3D
TERATHON_API Sphere3D Container(const Circle3D& c);
/// @brief Returns the container of the 3D sphere \c s.
/// @relatedalso Sphere3D
inline Sphere3D Container(const Sphere3D& s)
{
return (Sphere3D(s.u * s.u, s.x * s.u, s.y * s.u, s.z * s.u, s.w * s.u));
}
// ==============================================
// Partner
// ==============================================
/// @brief Returns the partner of the 3D round point \c a.
/// @relatedalso RoundPoint3D
inline RoundPoint3D Partner(const RoundPoint3D& a)
{
float w2 = a.w * a.w;
return (RoundPoint3D(a.x * w2, a.y * w2, a.z * w2, a.w * w2, (a.x * a.x + a.y * a.y + a.z * a.z - a.w * a.u) * a.w));
}
/// @brief Returns the partner of the 3D dipole \c d.
/// @relatedalso Dipole3D
TERATHON_API Dipole3D Partner(const Dipole3D& d);
/// @brief Returns the partner of the 3D circle \c c.
/// @relatedalso Circle3D
TERATHON_API Circle3D Partner(const Circle3D& c);
/// @brief Returns the partner of the 3D sphere \c s.
/// @relatedalso Sphere3D
inline Sphere3D Partner(const Sphere3D& s)
{
float u2 = s.u * s.u;
return (Sphere3D(s.u * u2, s.x * u2, s.y * u2, s.z * u2, (s.x * s.x + s.y * s.y + s.z * s.z - s.w * s.u) * s.u));
}
// ==============================================
// SquaredRadiusNorm
// ==============================================
/// @brief Returns the squared radius of the 3D round point \c a.
/// @relatedalso RoundPoint3D