-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathTSRigid2D.h
765 lines (584 loc) · 18.7 KB
/
TSRigid2D.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
//
// This file is part of the Terathon Math Library, by Eric Lengyel.
// Copyright 1999-2024, Terathon Software LLC
//
// This software is distributed under the MIT License.
// Separate proprietary licenses are available from Terathon Software.
//
#ifndef TSRigid2D_h
#define TSRigid2D_h
#include "TSVector3D.h"
#define TERATHON_FLATPOINT2D 1
#define TERATHON_LINE2D 1
namespace Terathon
{
class Line2D;
struct ConstFlatPoint2D;
struct ConstLine2D;
// ==============================================
// FlatPoint2D
// ==============================================
/// @brief Encapsulates a 2D point in rigid geometric algebra.
///
/// The \c FlatPoint2D class is used to store a two-dimensional flat point with a three-dimensional homogeneous vector representation in rigid geometric algebra.
///
/// @sa Line2D
class FlatPoint2D : public Vector3D
{
public:
TERATHON_API static const ConstFlatPoint2D origin;
/// @brief Default constructor that leaves the components uninitialized.
inline FlatPoint2D() = default;
/// @brief Constructor that sets components explicitly.
/// @param a,b,c The components of the flat point.
FlatPoint2D(float a, float b, float c) : Vector3D(a, b, c) {}
FlatPoint2D(const Point2D& p) : Vector3D(p) {}
FlatPoint2D(const Vector2D& v) : Vector3D(v) {}
FlatPoint2D(const Vector2D& v, float c) : Vector3D(v, c) {}
explicit FlatPoint2D(const Vector3D& p) : Vector3D(p) {}
FlatPoint2D& operator =(const Vector3D& v)
{
xyz = v.xyz;
return (*this);
}
void operator =(const Vector3D& v) volatile
{
xyz = v.xyz;
}
FlatPoint2D& operator =(const Point2D& p)
{
xy = p.xy;
z = 1.0F;
return (*this);
}
void operator =(const Point2D& p) volatile
{
xy = p.xy;
z = 1.0F;
}
FlatPoint2D& operator =(const Vector2D& v)
{
xy = v.xy;
z = 0.0F;
return (*this);
}
void operator =(const Vector2D& v) volatile
{
xy = v.xy;
z = 0.0F;
}
template <typename type>
FlatPoint2D& operator =(const Vec3D<type>& v)
{
x = float(v.x);
y = float(v.y);
z = float(v.z);
return (*this);
}
FlatPoint2D& operator +=(const Vector3D& v)
{
xyz += v.xyz;
return (*this);
}
FlatPoint2D& operator -=(const Vector3D& v)
{
xyz -= v.xyz;
return (*this);
}
FlatPoint2D& operator *=(const Vector3D& v)
{
xyz *= v.xyz;
return (*this);
}
FlatPoint2D& operator *=(float n)
{
xyz *= n;
return (*this);
}
FlatPoint2D& operator /=(float n)
{
xyz /= n;
return (*this);
}
FlatPoint2D& Unitize(void)
{
xy /= z;
z = 1.0F;
return (*this);
}
};
/// @brief Returns the negation of the 2D point \c p.
/// @related FlatPoint2D
inline FlatPoint2D operator -(const FlatPoint2D& p)
{
return (FlatPoint2D(-p.x, -p.y, -p.z));
}
inline FlatPoint2D operator +(const FlatPoint2D& p, const Vector3D& v)
{
return (FlatPoint2D(p.x + v.x, p.y + v.y, p.z + v.z));
}
inline FlatPoint2D operator +(const Vector3D& v, const FlatPoint2D& p)
{
return (FlatPoint2D(v.x + p.x, v.y + p.y, v.z + p.z));
}
inline FlatPoint2D operator -(const FlatPoint2D& p, const Vector3D& v)
{
return (FlatPoint2D(p.x - v.x, p.y - v.y, p.z - v.z));
}
inline FlatPoint2D operator -(const Vector3D& v, const FlatPoint2D& p)
{
return (FlatPoint2D(v.x - p.x, v.y - p.y, v.z - p.z));
}
/// @brief Returns the product of the 2D point \c p and the scalar \c n.
/// @related FlatPoint2D
inline FlatPoint2D operator *(const FlatPoint2D& p, float n)
{
return (FlatPoint2D(p.x * n, p.y * n, p.z * n));
}
/// @brief Returns the product of the 2D point \c p and the scalar \c n.
/// @related FlatPoint2D
inline FlatPoint2D operator *(float n, const FlatPoint2D& p)
{
return (FlatPoint2D(n * p.x, n * p.y, n * p.z));
}
/// @brief Returns the product of the 2D point \c p and the inverse of the scalar \c n.
/// @related FlatPoint2D
inline FlatPoint2D operator /(const FlatPoint2D& p, float n)
{
n = 1.0F / n;
return (FlatPoint2D(p.x * n, p.y * n, p.z * n));
}
inline FlatPoint2D operator *(const FlatPoint2D& p, const Vector3D& v)
{
return (FlatPoint2D(p.x * v.x, p.y * v.y, p.z * v.z));
}
inline FlatPoint2D operator *(const Vector3D& v, const FlatPoint2D& p)
{
return (FlatPoint2D(v.x * p.x, v.y * p.y, v.z * p.z));
}
// ==============================================
// Line2D
// ==============================================
struct TypeLine2D
{
typedef float component_type;
typedef Vector2D vector2D_type;
typedef Line2D vector3D_type;
};
/// @brief Encapsulates a 2D line in rigid geometric algebra.
///
/// The \c Line2D class is used to store a two-dimensional line with a three-dimensional bivector representation in rigid geometric algebra.
///
/// @sa FlatPoint2D
class Line2D : public Antivec3D<TypeLine2D>
{
public:
TERATHON_API static const ConstLine2D zero;
TERATHON_API static const ConstLine2D horizon;
/// @brief Default constructor that leaves the components uninitialized.
inline Line2D() = default;
/// @brief Constructor that sets components explicitly.
/// @param a,b,c The components of the line corresponding to the <b>e</b><sub>23</sub>, <b>e</b><sub>31</sub>, and <b>e</b><sub>12</sub> basis elements.
Line2D(float a, float b, float c) : Antivec3D<TypeLine2D>(a, b, c) {}
Line2D(const Point2D& p, const Point2D& q)
{
xyz.Set(p.y - q.y, q.x - p.x, p.x * q.y - p.y * q.x);
}
Line2D(const Point2D& p, const Vector2D& v)
{
xyz.Set(-v.y, v.x, p.x * v.y - p.y * v.x);
}
/// @brief Sets all three components of a 2D line.
/// @param a,b,c The components of the line corresponding to the <b>e</b><sub>23</sub>, <b>e</b><sub>31</sub>, and <b>e</b><sub>12</sub> basis elements.
Line2D& Set(float a, float b, float c)
{
xyz.Set(a, b, c);
return (*this);
}
void Set(float a, float b, float c) volatile
{
xyz.Set(a, b, c);
}
Line2D& Set(const Point2D& p, const Point2D& q)
{
xyz.Set(p.y - q.y, q.x - p.x, p.x * q.y - p.y * q.x);
return (*this);
}
void Set(const Point2D& p, const Point2D& q) volatile
{
xyz.Set(p.y - q.y, q.x - p.x, p.x * q.y - p.y * q.x);
}
Line2D& Set(const Point2D& p, const Vector2D& v)
{
xyz.Set(-v.y, v.x, p.x * v.y - p.y * v.x);
return (*this);
}
void Set(const Point2D& p, const Vector2D& v) volatile
{
xyz.Set(-v.y, v.x, p.x * v.y - p.y * v.x);
}
Line2D& operator =(const Line2D& v)
{
xyz = v.xyz;
return (*this);
}
void operator =(const Line2D& v) volatile
{
xyz = v.xyz;
}
template <typename type_struct, int count, int index_x, int index_y, int index_z>
Line2D& operator =(const Subvec3D<type_struct, true, count, index_x, index_y, index_z>& v)
{
xyz = v;
return (*this);
}
template <typename type_struct, int count, int index_x, int index_y, int index_z>
void operator =(const Subvec3D<type_struct, true, count, index_x, index_y, index_z>& v) volatile
{
xyz = v;
}
Line2D& operator *=(float n)
{
xyz *= n;
return (*this);
}
Line2D& operator /=(float n)
{
xyz /= n;
return (*this);
}
Line2D& Unitize(void)
{
return (*this *= InverseSqrt(x * x + y * y));
}
};
/// @brief Returns the negation of the 2D line \c g.
/// @related Line2D
inline Line2D operator -(const Line2D& g)
{
return (Line2D(-g.x, -g.y, -g.z));
}
/// @brief Returns the product of the 2D line \c g and the scalar \c n.
/// @related Line2D
inline Line2D operator *(const Line2D& g, float n)
{
return (Line2D(g.x * n, g.y * n, g.z * n));
}
/// @brief Returns the product of the 2D line \c g and the scalar \c n.
/// @related Line2D
inline Line2D operator *(float n, const Line2D& g)
{
return (Line2D(n * g.x, n * g.y, n * g.z));
}
/// @brief Returns the product of the 2D line \c g and the inverse of the scalar \c n.
/// @related Line2D
inline Line2D operator /(const Line2D& g, float n)
{
n = 1.0F / n;
return (Line2D(g.x * n, g.y * n, g.z * n));
}
// ==============================================
// Complement
// ==============================================
/// @brief Returns the complement of the 2D flat point \c p, which is a 2D line.
/// @relatedalso FlatPoint2D
inline Line2D Complement(const FlatPoint2D& p)
{
return (Line2D(-p.x, -p.y, -p.z));
}
/// @brief Returns the complement of the 2D line \c g, which is a 2D flat point.
/// @relatedalso FlatPoint2D
inline FlatPoint2D Complement(const Line2D& g)
{
return (FlatPoint2D(-g.x, -g.y, -g.z));
}
inline Line2D operator !(const FlatPoint2D& p) {return (Complement(p));}
inline FlatPoint2D operator !(const Line2D& g) {return (Complement(g));}
// ==============================================
// BulkDual
// ==============================================
/// @brief Returns the bulk dual of the 2D flat point \c p, which is a 2D line through the origin.
/// @relatedalso FlatPoint2D
inline Line2D BulkDual(const FlatPoint2D& p)
{
return (Line2D(-p.x, -p.y, 0.0F));
}
/// @brief Returns the bulk dual of the 2D line \c g, which is the 2D origin.
/// @relatedalso Line2D
inline FlatPoint2D BulkDual(const Line2D& g)
{
return (FlatPoint2D(0.0F, 0.0F, -g.z));
}
// ==============================================
// WeightDual
// ==============================================
/// @brief Returns the weight dual of the 2D flat point \c p, which is the 2D horizon.
/// @relatedalso FlatPoint2D
inline Line2D WeightDual(const FlatPoint2D& p)
{
return (Line2D(0.0F, 0.0F, -p.z));
}
/// @brief Returns the weight dual of the 2D line \c g, which is a 2D flat point in the horizon.
/// @relatedalso Line2D
inline FlatPoint2D WeightDual(const Line2D& g)
{
return (FlatPoint2D(-g.x, -g.y, 0.0F));
}
// ==============================================
// Support
// ==============================================
inline FlatPoint2D Support(const Line2D& g)
{
return (FlatPoint2D(-g.x * g.z, -g.y * g.z, g.x * g.x + g.y * g.y));
}
// ==============================================
// Antisupport
// ==============================================
inline Line2D Antisupport(const FlatPoint2D& p)
{
return (Line2D(-p.x * p.z, -p.y * p.z, p.x * p.x + p.y * p.y));
}
// ==============================================
// Reverse
// ==============================================
/// @brief Returns the reverse of the 2D flat point \c p.
/// @relatedalso FlatPoint2D
inline const FlatPoint2D& Reverse(const FlatPoint2D& p)
{
return (p);
}
/// @brief Returns the reverse of the 2D line \c g.
/// @relatedalso Line2D
inline Line2D Reverse(const Line2D& g)
{
return (Line2D(-g.x, -g.y, -g.z));
}
// ==============================================
// Antireverse
// ==============================================
/// @brief Returns the antireverse of the 2D flat point \c p.
/// @relatedalso FlatPoint2D
inline FlatPoint2D Antireverse(const FlatPoint2D& p)
{
return (FlatPoint2D(-p.x, -p.y, -p.z));
}
/// @brief Returns the antireverse of the 2D line \c g.
/// @relatedalso Line2D
inline const Line2D& Antireverse(const Line2D& g)
{
return (g);
}
inline FlatPoint2D operator ~(const FlatPoint2D& p) {return (Antireverse(p));}
inline const Line2D& operator ~(const Line2D& g) {return (g);}
// ==============================================
// Attitude
// ==============================================
/// @brief Returns the attitude of the 2D flat point \c p, which is a scalar.
/// @relatedalso FlatPoint2D
inline float Attitude(const FlatPoint2D& p)
{
return (p.z);
}
/// @brief Returns the attitude of the 2D line \c g as a 2D vector.
/// @relatedalso Line3D
inline Vector2D Attitude(const Line2D& g)
{
return (Vector2D(g.y, -g.x));
}
// ==============================================
// SquaredBulkNorm
// ==============================================
/// @brief Returns the squared bulk of the 2D flat point \c p.
/// @relatedalso FlatPoint2D
inline float SquaredBulkNorm(const FlatPoint2D& p)
{
return (p.x * p.x + p.y * p.y);
}
/// @brief Returns the squared bulk of the 2D line \c g.
/// @relatedalso Line2D
inline float SquaredBulkNorm(const Line2D& g)
{
return (g.z * g.z);
}
// ==============================================
// SquaredWeightNorm
// ==============================================
/// @brief Returns the squared weight of the 2D flat point \c p.
/// @relatedalso FlatPoint2D
inline float SquaredWeightNorm(const FlatPoint2D& p)
{
return (p.z * p.z);
}
/// @brief Returns the squared weight of the 2D line \c g.
/// @relatedalso Line2D
inline float SquaredWeightNorm(const Line2D& g)
{
return (g.x * g.x + g.y * g.y);
}
// ==============================================
// Unitize
// ==============================================
/// @brief Calculates the unitized equivalent of a 2D point.
///
/// Multiplies the 2D point \c p by the inverse magnitude of its weight, which is its <i>z</i> component.
/// The return value is a Euclidean point having an implicit <i>z</i> coordinate of one.
///
/// @relatedalso FlatPoint2D
inline Point2D Unitize(const FlatPoint2D& p)
{
float n = 1.0F / p.z;
return (Point2D(p.x * n, p.y * n));
}
/// @brief Calculates the unitized equivalent of a 2D line.
///
/// Multiplies the 2D line \c g by the inverse magnitude of its weight, which is the 2D bivector given by
/// its <i>x</i> and <i>y</i> coordinates. The returned line has a unit-length normal.
/// If the <i>x</i> and <i>z</i> coordinates are both zero, then the result is undefined.
///
/// @relatedalso Line2D
inline Line2D Unitize(const Line2D& g)
{
return (g * InverseSqrt(g.x * g.x + g.y * g.y));
}
// ==============================================
// Dot
// ==============================================
/// @brief Returns the dot product between 2D flat points \c a and \c b.
/// @relatedalso FlatPoint2D
inline float Dot(const FlatPoint2D& a, const FlatPoint2D& b)
{
return (a.x * b.x + a.y * b.y);
}
/// @brief Returns the dot product between 2D lines \c g and \c h.
/// @relatedalso Line2D
inline float Dot(const Line2D& g, const Line2D& h)
{
return (g.z * h.z);
}
// ==============================================
// Antidot
// ==============================================
/// @brief Returns the antidot product between 2D flat points \c a and \c b.
/// @relatedalso FlatPoint2D
inline float Antidot(const FlatPoint2D& a, const FlatPoint2D& b)
{
return (a.z * b.z);
}
/// @brief Returns the antidot product between 2D lines \c g and \c h.
/// @relatedalso Line2D
inline float Antidot(const Line2D& g, const Line2D& h)
{
return (g.x * h.x + g.y * h.y);
}
// ==============================================
// Translate
// ==============================================
/// @brief Translates the 2D flat point \c p by the vector \c t.
/// @relatedalso FlatPoint2D
inline FlatPoint2D Translate(const FlatPoint2D& p, const Vector2D& t)
{
return (FlatPoint2D(p.xy + t.xy * p.z, p.z));
}
/// @brief Translates the 2D line \c g by the vector \c t.
/// @relatedalso Line2D
inline Line2D Translate(const Line2D& g, const Vector2D& t)
{
return (Line2D(g.x, g.y, g.z - g.x * t.x - g.y * t.y));
}
// ==============================================
// Join
// ==============================================
/// @brief Calculates the join of the 2D flat points \c p and \c q to produce a 2D line.
/// @relatedalso Line2D
inline Line2D Wedge(const FlatPoint2D& p, const FlatPoint2D& q)
{
return (Line2D(p.y * q.z - p.z * q.y, p.z * q.x - p.x * q.z, p.x * q.y - p.y * q.x));
}
/// @brief Calculates the join of the 2D Euclidean points \c p and \c q to produce a 2D line.
/// @relatedalso Line3D
inline Line2D Wedge(const Point2D& p, const Point2D& q)
{
return (Line2D(p.y - q.y, q.x - p.x, p.x * q.y - p.y * q.x));
}
/// @brief Calculates the join of the 2D Euclidean point \c p and 2D direction vector \c v to produce a 2D line.
/// @relatedalso Line3D
inline Line2D Wedge(const Point2D& p, const Vector2D& v)
{
return (Line2D(-v.y, v.x, p.x * v.y - p.y * v.x));
}
inline Line2D operator ^(const FlatPoint2D& p, const FlatPoint2D& q) {return (Wedge(p, q));}
inline Line2D operator ^(const Point2D& p, const Point2D& q) {return (Wedge(p, q));}
inline Line2D operator ^(const Point2D& p, const Vector2D& v) {return (Wedge(p, v));}
// ==============================================
// Meet
// ==============================================
/// @brief Calculates the meet of the 2D lines \c g and \c h to produce a 2D flat point.
/// @relatedalso FlatPoint2D
inline FlatPoint2D Antiwedge(const Line2D& g, const Line2D& h)
{
return (FlatPoint2D(g.z * h.y - g.y * h.z, g.x * h.z - g.z * h.x, g.y * h.x - g.x * h.y));
}
inline float Antiwedge(const Point2D& p, const Line2D& g)
{
return (-p.x * g.x - p.y * g.y - g.z);
}
inline float Antiwedge(const Line2D& g, const Point2D& p)
{
return (-p.x * g.x - p.y * g.y - g.z);
}
inline FlatPoint2D operator ^(const Line2D& g, const Line2D& h) {return (Antiwedge(g, h));}
inline float operator ^(const Point2D& p, const Line2D& g) {return (Antiwedge(p, g));}
inline float operator ^(const Line2D& g, const Point2D& p) {return (Antiwedge(g, p));}
// ==============================================
// Project
// ==============================================
/// @brief Returns the projection of the 2D point \c p onto the 2D line \c g under the assumption that the line is unitized.
inline Point2D Project(const Point2D& p, const Line2D& g)
{
return (Point2D(p + !g.xy * (p ^ g)));
}
// ==============================================
// Antiproject
// ==============================================
/// @brief Returns the antiprojection of the 2D line \c g onto the 2D point \c p (where \c p is always unitized because it has an implicit <i>z</i> coordinate of 1).
inline Line2D Antiproject(const Line2D& g, const Point2D& p)
{
return (Line2D(g.x, g.y, -p.x * g.x - p.y * g.y));
}
// ==============================================
// POD Structures
// ==============================================
struct ConstFlatPoint2D
{
float x, y, z;
operator const FlatPoint2D&(void) const
{
return (reinterpret_cast<const FlatPoint2D&>(*this));
}
const FlatPoint2D *operator &(void) const
{
return (reinterpret_cast<const FlatPoint2D *>(this));
}
const FlatPoint2D *operator ->(void) const
{
return (reinterpret_cast<const FlatPoint2D *>(this));
}
};
struct ConstLine2D
{
float x, y, z;
operator const Line2D&(void) const
{
return (reinterpret_cast<const Line2D&>(*this));
}
const Line2D *operator &(void) const
{
return (reinterpret_cast<const Line2D *>(this));
}
const Line2D *operator ->(void) const
{
return (reinterpret_cast<const Line2D *>(this));
}
};
}
#endif