-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathTSRigid3D.h
1235 lines (951 loc) · 34 KB
/
TSRigid3D.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// This file is part of the Terathon Math Library, by Eric Lengyel.
// Copyright 1999-2024, Terathon Software LLC
//
// This software is distributed under the MIT License.
// Separate proprietary licenses are available from Terathon Software.
//
#ifndef TSRigid3D_h
#define TSRigid3D_h
#include "TSBivector3D.h"
#include "TSVector4D.h"
#define TERATHON_FLATPOINT3D 1
#define TERATHON_LINE3D 1
#define TERATHON_PLANE3D 1
namespace Terathon
{
class Plane3D;
struct ConstFlatPoint3D;
struct ConstLine3D;
struct ConstPlane3D;
// ==============================================
// FlatPoint3D
// ==============================================
/// @brief Encapsulates a 3D <a href="https://rigidgeometricalgebra.org/wiki/index.php?title=Point">point</a> in rigid geometric algebra.
///
/// The \c FlatPoint3D class is used to store a three-dimensional flat point with a four-dimensional homogeneous vector representation in rigid geometric algebra.
///
/// @sa Line3D
/// @sa Plane3D
class FlatPoint3D : public Vector4D
{
public:
TERATHON_API static const ConstFlatPoint3D origin;
/// @brief Default constructor that leaves the components uninitialized.
inline FlatPoint3D() = default;
/// @brief Constructor that sets components explicitly.
/// @param a,b,c,d The components of the flat point.
FlatPoint3D(float a, float b, float c, float d) : Vector4D(a, b, c, d) {}
FlatPoint3D(const Point3D& p) : Vector4D(p) {}
FlatPoint3D(const Vector3D& v) : Vector4D(v) {}
FlatPoint3D(const Vector3D& v, float d) : Vector4D(v, d) {}
explicit FlatPoint3D(const Vector4D& p) : Vector4D(p) {}
FlatPoint3D& operator =(const Vector4D& v)
{
xyzw = v.xyzw;
return (*this);
}
void operator =(const Vector4D& v) volatile
{
xyzw = v.xyzw;
}
FlatPoint3D& operator =(const Point3D& p)
{
xyz = p.xyz;
w = 1.0F;
return (*this);
}
void operator =(const Point3D& p) volatile
{
xyz = p.xyz;
w = 1.0F;
}
FlatPoint3D& operator =(const Vector3D& v)
{
xyz = v.xyz;
w = 0.0F;
return (*this);
}
void operator =(const Vector3D& v) volatile
{
xyz = v.xyz;
w = 0.0F;
}
template <typename type>
FlatPoint3D& operator =(const Vec4D<type>& v)
{
x = float(v.x);
y = float(v.y);
z = float(v.z);
w = float(v.w);
return (*this);
}
FlatPoint3D& operator +=(const Vector4D& v)
{
xyzw += v.xyzw;
return (*this);
}
FlatPoint3D& operator -=(const Vector4D& v)
{
xyzw -= v.xyzw;
return (*this);
}
FlatPoint3D& operator *=(const Vector4D& v)
{
xyzw *= v.xyzw;
return (*this);
}
FlatPoint3D& operator *=(float n)
{
xyzw *= n;
return (*this);
}
FlatPoint3D& operator /=(float n)
{
xyzw /= n;
return (*this);
}
FlatPoint3D& Unitize(void)
{
xyz /= w;
w = 1.0F;
return (*this);
}
};
/// @brief Returns the negation of the 3D point \c p.
/// @related FlatPoint3D
inline FlatPoint3D operator -(const FlatPoint3D& p)
{
return (FlatPoint3D(-p.x, -p.y, -p.z, -p.w));
}
inline FlatPoint3D operator +(const FlatPoint3D& p, const Vector4D& v)
{
return (FlatPoint3D(p.x + v.x, p.y + v.y, p.z + v.z, p.w + v.w));
}
inline FlatPoint3D operator +(const Vector4D& v, const FlatPoint3D& p)
{
return (FlatPoint3D(v.x + p.x, v.y + p.y, v.z + p.z, v.w + p.w));
}
inline FlatPoint3D operator -(const FlatPoint3D& p, const Vector4D& v)
{
return (FlatPoint3D(p.x - v.x, p.y - v.y, p.z - v.z, p.w - v.w));
}
inline FlatPoint3D operator -(const Vector4D& v, const FlatPoint3D& p)
{
return (FlatPoint3D(v.x - p.x, v.y - p.y, v.z - p.z, v.w - p.w));
}
/// @brief Returns the product of the 3D point \c p and the scalar \c n.
/// @related FlatPoint3D
inline FlatPoint3D operator *(const FlatPoint3D& p, float n)
{
return (FlatPoint3D(p.x * n, p.y * n, p.z * n, p.w * n));
}
/// @brief Returns the product of the 3D point \c p and the scalar \c n.
/// @related FlatPoint3D
inline FlatPoint3D operator *(float n, const FlatPoint3D& p)
{
return (FlatPoint3D(n * p.x, n * p.y, n * p.z, n * p.w));
}
/// @brief Returns the product of the 3D point \c p and the inverse of the scalar \c n.
/// @related FlatPoint3D
inline FlatPoint3D operator /(const FlatPoint3D& p, float n)
{
n = 1.0F / n;
return (FlatPoint3D(p.x * n, p.y * n, p.z * n, p.w * n));
}
// ==============================================
// Line3D
// ==============================================
/// @brief Encapsulates a 3D <a href="https://rigidgeometricalgebra.org/wiki/index.php?title=Line">line</a> in rigid geometric algebra.
///
/// The \c Line3D class is used to store a three-dimensional line with a four-dimensional bivector representation in rigid geometric algebra.
/// The components of the line are stored as a Vector3D member named \c v and a Bivector3D member named \c m.
///
/// @sa FlatPoint3D
/// @sa Plane3D
class Line3D
{
public:
Vector3D v;
Bivector3D m;
TERATHON_API static const ConstLine3D zero;
/// @brief Default constructor that leaves the components uninitialized.
inline Line3D() = default;
/// @brief Constructor that sets components explicitly.
/// @param vx,vy,vz The components of the direction corresponding to the <b>e</b><sub>41</sub>, <b>e</b><sub>42</sub>, and <b>e</b><sub>43</sub> basis elements.
/// @param mx,my,mz The components of the moment corresponding to the <b>e</b><sub>23</sub>, <b>e</b><sub>31</sub>, and <b>e</b><sub>12</sub> basis elements.
Line3D(float vx, float vy, float vz, float mx, float my, float mz)
{
v.Set(vx, vy, vz);
m.Set(mx, my, mz);
}
/// @brief Constructor that sets components explicitly.
/// @param direction A 3D vector corresponding to the direction of the line.
/// @param moment A 3D bivector corresponding to the moment of the line.
Line3D(const Vector3D& direction, const Bivector3D& moment)
{
v = direction;
m = moment;
}
/// @brief Sets all six components of a 3D line.
/// @param vx,vy,vz The components of the direction corresponding to the <b>e</b><sub>41</sub>, <b>e</b><sub>42</sub>, and <b>e</b><sub>43</sub> basis elements.
/// @param mx,my,mz The components of the moment corresponding to the <b>e</b><sub>23</sub>, <b>e</b><sub>31</sub>, and <b>e</b><sub>12</sub> basis elements.
Line3D& Set(float vx, float vy, float vz, float mx, float my, float mz)
{
v.Set(vx, vy, vz);
m.Set(mx, my, mz);
return (*this);
}
void Set(float vx, float vy, float vz, float mx, float my, float mz) volatile
{
v.Set(vx, vy, vz);
m.Set(mx, my, mz);
}
/// @brief Sets all six components of a 3D line.
/// @param direction A 3D vector corresponding to the direction of the line.
/// @param moment A 3D bivector corresponding to the moment of the line.
Line3D& Set(const Vector3D& direction, const Bivector3D& moment)
{
v = direction;
m = moment;
return (*this);
}
void Set(const Vector3D& direction, const Bivector3D& moment) volatile
{
v = direction;
m = moment;
}
Line3D& operator =(const Line3D& l)
{
v = l.v;
m = l.m;
return (*this);
}
void operator =(const Line3D& l) volatile
{
v = l.v;
m = l.m;
}
Line3D& operator *=(float n)
{
v *= n;
m *= n;
return (*this);
}
Line3D& operator /=(float n)
{
n = 1.0F / n;
v *= n;
m *= n;
return (*this);
}
Line3D& Unitize(void)
{
return (*this *= InverseMag(v));
}
};
/// @brief Returns the negation of the 3D line \c l.
/// @related Line3D
inline Line3D operator -(const Line3D& l)
{
return (Line3D(-l.v.x, -l.v.y, -l.v.z, -l.m.x, -l.m.y, -l.m.z));
}
/// @brief Returns the product of the 3D line \c l and the scalar \c n.
/// @related Line3D
inline Line3D operator *(const Line3D& l, float n)
{
return (Line3D(l.v.x * n, l.v.y * n, l.v.z * n, l.m.x * n, l.m.y * n, l.m.z * n));
}
/// @brief Returns the product of the 3D line \c l and the scalar \c n.
/// @related Line3D
inline Line3D operator *(float n, const Line3D& l)
{
return (Line3D(n * l.v.x, n * l.v.y, n * l.v.z, n * l.m.x, n * l.m.y, n * l.m.z));
}
/// @brief Returns the product of the 3D line \c l and the inverse of the scalar \c n.
/// @related Line3D
inline Line3D operator /(const Line3D& l, float n)
{
n = 1.0F / n;
return (Line3D(l.v.x * n, l.v.y * n, l.v.z * n, l.m.x * n, l.m.y * n, l.m.z * n));
}
/// @brief Returns a boolean value indicating whether the two 3D lines \c k and \c l are equal.
/// @related Line3D
inline bool operator ==(const Line3D& k, const Line3D& l)
{
return ((k.v == l.v) && (k.m == l.m));
}
/// @brief Returns a boolean value indicating whether the two 3D lines \c k and \c l are not equal.
/// @related Line3D
inline bool operator !=(const Line3D& k, const Line3D& l)
{
return ((k.v != l.v) || (k.m != l.m));
}
// ==============================================
// Plane3D
// ==============================================
struct TypePlane3D
{
typedef float component_type;
typedef Vector2D vector2D_type;
typedef Bivector3D vector3D_type;
typedef Plane3D vector4D_type;
};
/// @brief Encapsulates a 3D <a href="https://rigidgeometricalgebra.org/wiki/index.php?title=Plane">plane</a> in rigid geometric algebra.
///
/// The \c Plane3D class is used to store a three-dimensional plane with a four-dimensional trivector representation in rigid geometric algebra.
///
/// @sa FlatPoint3D
/// @sa Line3D
class Plane3D : public Antivec4D<TypePlane3D>
{
public:
TERATHON_API static const ConstPlane3D zero;
TERATHON_API static const ConstPlane3D horizon;
/// @brief Default constructor that leaves the components uninitialized.
inline Plane3D() = default;
/// @brief Constructor that sets components explicitly.
/// @param a,b,c,d The components of the plane.
Plane3D(float a, float b, float c, float d) : Antivec4D<TypePlane3D>(a, b, c, d) {}
Plane3D(const Bivector3D& n, float d)
{
xyz = n.xyz;
w = d;
}
Plane3D(const Bivector3D& n, const Point3D& p)
{
xyz = n.xyz;
w = -(n ^ p);
}
Plane3D(const Point3D& p1, const Point3D& p2, const Point3D& p3)
{
xyz = (p2 - p1) ^ (p3 - p1);
w = -(xyz ^ p1);
}
/// @brief Sets all four components of a 3D plane.
/// @param a,b,c,d The new components of the plane.
Plane3D& Set(float a, float b, float c, float d)
{
xyzw.Set(a, b, c, d);
return (*this);
}
void Set(float a, float b, float c, float d) volatile
{
xyzw.Set(a, b, c, d);
}
/// @brief Sets all four components of a 3D plane.
/// @param n The plane normal corresponding to the <b>e</b><sub>423</sub>, <b>e</b><sub>431</sub>, and <b>e</b><sub>412</sub> basis elements.
/// @param d The plane distance corresponding to the <b>e</b><sub>321</sub> basis element.
Plane3D& Set(const Bivector3D& n, float d)
{
xyz.Set(n.x, n.y, n.z);
w = d;
return (*this);
}
void Set(const Bivector3D& n, float d) volatile
{
xyz.Set(n.x, n.y, n.z);
w = d;
}
/// @brief Sets all four components of a 3D plane.
/// @param n The plane normal corresponding to the <b>e</b><sub>423</sub>, <b>e</b><sub>431</sub>, and <b>e</b><sub>412</sub> basis elements.
/// @param p A point on the plane. The <i>w</i> coordinate corresponding to the <b>e</b><sub>321</sub> basis element is given by −(<b>n</b> ∧ <b>p</b>).
Plane3D& Set(const Bivector3D& n, const Point3D& p)
{
xyz.Set(n.x, n.y, n.z);
w = -(n ^ p);
return (*this);
}
void Set(const Bivector3D& n, const Point3D& p) volatile
{
xyz.Set(n.x, n.y, n.z);
w = -(n ^ p);
}
Plane3D& Set(const Point3D& p1, const Point3D& p2, const Point3D& p3)
{
xyz = (p2 - p1) ^ (p3 - p1);
w = -(xyz ^ p1);
return (*this);
}
Plane3D& operator =(const Plane3D& g)
{
xyzw = g.xyzw;
return (*this);
}
void operator =(const Plane3D& g) volatile
{
xyzw = g.xyzw;
}
template <typename type_struct, int count, int index_x, int index_y, int index_z, int index_w>
Plane3D& operator =(const Subvec4D<type_struct, true, count, index_x, index_y, index_z, index_w>& v)
{
xyzw = v;
return (*this);
}
template <typename type_struct, int count, int index_x, int index_y, int index_z, int index_w>
void operator =(const Subvec4D<type_struct, true, count, index_x, index_y, index_z, index_w>& v) volatile
{
xyzw = v;
}
Plane3D& operator *=(float n)
{
xyzw *= n;
return (*this);
}
Plane3D& operator /=(float n)
{
xyzw /= n;
return (*this);
}
Plane3D& Unitize(void)
{
return (*this *= InverseSqrt(x * x + y * y + z * z));
}
};
/// @brief Returns the negation of the 3D plane \c g.
/// @related Plane3D
inline Plane3D operator -(const Plane3D& g)
{
return (Plane3D(-g.x, -g.y, -g.z, -g.w));
}
/// @brief Returns the product of the 3D plane \c g and the scalar \c n.
/// @related Plane3D
inline Plane3D operator *(const Plane3D& g, float n)
{
return (Plane3D(g.x * n, g.y * n, g.z * n, g.w * n));
}
/// @brief Returns the product of the 3D plane \c g and the scalar \c n.
/// @related Plane3D
inline Plane3D operator *(float n, const Plane3D& g)
{
return (Plane3D(n * g.x, n * g.y, n * g.z, n * g.w));
}
/// @brief Returns the product of the 3D plane \c g and the inverse of the scalar \c n.
/// @related Plane3D
inline Plane3D operator /(const Plane3D& g, float n)
{
n = 1.0F / n;
return (Plane3D(g.x * n, g.y * n, g.z * n, g.w * n));
}
// ==============================================
// Complements
// ==============================================
/// @brief Returns the left complement of the 3D flat point \c p, which is a 3D plane.
/// @relatedalso FlatPoint3D
inline Plane3D LeftComplement(const FlatPoint3D& p)
{
return (Plane3D(-p.x, -p.y, -p.z, -p.w));
}
/// @brief Returns the right complement of the 3D flat point \c p, which is a 3D plane.
/// @relatedalso FlatPoint3D
inline const Plane3D& RightComplement(const FlatPoint3D& p)
{
return (reinterpret_cast<const Plane3D&>(p));
}
/// @brief Returns the left complement of the 3D line \c l, which is another 3D line.
/// @relatedalso Line3D
inline Line3D LeftComplement(const Line3D& l)
{
return (Line3D(-l.m.x, -l.m.y, -l.m.z, -l.v.x, -l.v.y, -l.v.z));
}
/// @brief Returns the right complement of the 3D line \c l, which is another 3D line.
/// @relatedalso Line3D
inline Line3D RightComplement(const Line3D& l)
{
return (Line3D(-l.m.x, -l.m.y, -l.m.z, -l.v.x, -l.v.y, -l.v.z));
}
/// @brief Returns the left complement of the 3D plane \c g, which is a 3D flat point.
/// @relatedalso Plane3D
inline const FlatPoint3D& LeftComplement(const Plane3D& g)
{
return (reinterpret_cast<const FlatPoint3D&>(g));
}
/// @brief Returns the right complement of the 3D plane \c g, which is a 3D flat point.
/// @relatedalso Plane3D
inline FlatPoint3D RightComplement(const Plane3D& g)
{
return (FlatPoint3D(-g.x, -g.y, -g.z, -g.w));
}
inline Plane3D operator !(const Point3D& p) {return (RightComplement(p));}
inline Line3D operator !(const Line3D& l) {return (RightComplement(l));}
inline FlatPoint3D operator !(const Plane3D& g) {return (RightComplement(g));}
// ==============================================
// BulkDual
// ==============================================
/// @brief Returns the bulk dual of the 3D flat point \c p, which is a 3D plane through the origin.
/// @relatedalso FlatPoint3D
inline Plane3D BulkDual(const FlatPoint3D& p)
{
return (Plane3D(-p.x, -p.y, -p.z, 0.0F));
}
/// @brief Returns the bulk dual of the 3D line \c l, which is a 3D line through the origin.
/// @relatedalso Line3D
inline Line3D BulkDual(const Line3D& l)
{
return (Line3D(-l.m.x, -l.m.y, -l.m.z, 0.0F, 0.0F, 0.0F));
}
/// @brief Returns the bulk dual of the 3D plane \c g, which is the 3D origin.
/// @relatedalso Plane3D
inline FlatPoint3D BulkDual(const Plane3D& g)
{
return (FlatPoint3D(0.0F, 0.0F, 0.0F, g.w));
}
// ==============================================
// WeightDual
// ==============================================
/// @brief Returns the weight dual of the 3D flat point \c p, which is the 3D horizon.
/// @relatedalso FlatPoint3D
inline Plane3D WeightDual(const FlatPoint3D& p)
{
return (Plane3D(0.0F, 0.0F, 0.0F, -p.w));
}
/// @brief Returns the weight dual of the 3D line \c l, which is a 3D line in the horizon.
/// @relatedalso Line3D
inline Line3D WeightDual(const Line3D& l)
{
return (Line3D(0.0F, 0.0F, 0.0F, -l.v.x, -l.v.y, -l.v.z));
}
/// @brief Returns the weight dual of the 3D plane \c g, which is a 3D flat point in the horizon.
/// @relatedalso Plane3D
inline FlatPoint3D WeightDual(const Plane3D& g)
{
return (FlatPoint3D(g.x, g.y, g.z, 0.0F));
}
// ==============================================
// Support
// ==============================================
inline FlatPoint3D Support(const Line3D& l)
{
return (FlatPoint3D(l.v.y * l.m.z - l.v.z * l.m.y, l.v.z * l.m.x - l.v.x * l.m.z, l.v.x * l.m.y - l.v.y * l.m.x, l.v.x * l.v.x + l.v.y * l.v.y + l.v.z * l.v.z));
}
inline FlatPoint3D Support(const Plane3D& g)
{
return (FlatPoint3D(-g.x * g.w, -g.y * g.w, -g.z * g.w, g.x * g.x + g.y * g.y + g.z * g.z));
}
// ==============================================
// Antisupport
// ==============================================
inline Plane3D Antisupport(const FlatPoint3D& p)
{
return (Plane3D(-p.x * p.w, -p.y * p.w, -p.z * p.w, p.x * p.x + p.y * p.y + p.z * p.z));
}
inline Plane3D Antisupport(const Point3D& p)
{
return (Plane3D(-p.x, -p.y, -p.z, p.x * p.x + p.y * p.y + p.z * p.z));
}
inline Plane3D Antisupport(const Line3D& l)
{
return (Plane3D(l.v.z * l.m.y - l.v.y * l.m.z, l.v.x * l.m.z - l.v.z * l.m.x, l.v.y * l.m.x - l.v.x * l.m.y, l.m.x * l.m.x + l.m.y * l.m.y + l.m.z * l.m.z));
}
// ==============================================
// Reverse
// ==============================================
/// @brief Returns the reverse of the 3D flat point \c p.
/// @relatedalso FlatPoint3D
inline const FlatPoint3D& Reverse(const FlatPoint3D& p)
{
return (p);
}
/// @brief Returns the reverse of the 3D line \c l.
/// @relatedalso Line3D
inline Line3D Reverse(const Line3D& l)
{
return (Line3D(-l.v.x, -l.v.y, -l.v.z, -l.m.x, -l.m.y, -l.m.z));
}
/// @brief Returns the reverse of the 3D plane \c g.
/// @relatedalso Plane3D
inline Plane3D Reverse(const Plane3D& g)
{
return (Plane3D(-g.x, -g.y, -g.z, -g.w));
}
// ==============================================
// Antireverse
// ==============================================
/// @brief Returns the antireverse of the 3D flat point \c p.
/// @relatedalso FlatPoint3D
inline FlatPoint3D Antireverse(const FlatPoint3D& p)
{
return (FlatPoint3D(-p.x, -p.y, -p.z, -p.w));
}
/// @brief Returns the antireverse of the 3D line \c l.
/// @relatedalso Line3D
inline Line3D Antireverse(const Line3D& l)
{
return (Line3D(-l.v.x, -l.v.y, -l.v.z, -l.m.x, -l.m.y, -l.m.z));
}
/// @brief Returns the antireverse of the 3D plane \c g.
/// @relatedalso Plane3D
inline const Plane3D& Antireverse(const Plane3D& g)
{
return (g);
}
inline FlatPoint3D operator ~(const FlatPoint3D& p) {return (Antireverse(p));}
inline Line3D operator ~(const Line3D& l) {return (Antireverse(l));}
inline const Plane3D& operator ~(const Plane3D& g) {return (Antireverse(g));}
// ==============================================
// Attitude
// ==============================================
/// @brief Returns the attitude of the 3D flat point \c p, which is a scalar.
/// @relatedalso FlatPoint3D
inline float Attitude(const FlatPoint3D& p)
{
return (p.w);
}
/// @brief Returns the attitude of the 3D line \c l as a 3D vector.
/// @relatedalso Line3D
inline Vector3D Attitude(const Line3D& l)
{
return (Vector3D(l.v.x, l.v.y, l.v.z));
}
/// @brief Returns the attitude of the 3D plane \c g as a 3D bivector.
/// @relatedalso Plane3D
inline Bivector3D Attitude(const Plane3D& g)
{
return (Bivector3D(g.x, g.y, g.z));
}
// ==============================================
// SquaredBulkNorm
// ==============================================
/// @brief Returns the squared bulk of the 3D flat point \c p.
/// @relatedalso FlatPoint3D
inline float SquaredBulkNorm(const FlatPoint3D& p)
{
return (p.x * p.x + p.y * p.y + p.z * p.z);
}
/// @brief Returns the squared bulk of the 3D line \c l.
/// @relatedalso Line3D
inline float SquaredBulkNorm(const Line3D& l)
{
return (l.m.x * l.m.x + l.m.y * l.m.y + l.m.z * l.m.z);
}
/// @brief Returns the squared bulk of the 3D plane \c g.
/// @relatedalso Plane3D
inline float SquaredBulkNorm(const Plane3D& g)
{
return (g.w * g.w);
}
// ==============================================
// SquaredWeightNorm
// ==============================================
/// @brief Returns the squared weight of the 3D flat point \c p.
/// @relatedalso FlatPoint3D
inline float SquaredWeightNorm(const FlatPoint3D& p)
{
return (p.w * p.w);
}
/// @brief Returns the squared weight of the 3D line \c l.
/// @relatedalso Line3D
inline float SquaredWeightNorm(const Line3D& l)
{
return (l.v.x * l.v.x + l.v.y * l.v.y + l.v.z * l.v.z);
}
/// @brief Returns the squared weight of the 3D plane \c g.
/// @relatedalso Plane3D
inline float SquaredWeightNorm(const Plane3D& g)
{
return (g.x * g.x + g.y * g.y + g.z * g.z);
}
// ==============================================
// Unitize
// ==============================================
/// @brief Calculates the unitized equivalent of a 3D point.
///
/// Multiplies the 3D point \c p by the inverse magnitude of its weight, which is its <i>w</i> component.
/// The return value is a Euclidean point having an implicit <i>w</i> coordinate of one.
///
/// @relatedalso FlatPoint3D
inline Point3D Unitize(const FlatPoint3D& p)
{
float n = 1.0F / p.w;
return (Point3D(p.x * n, p.y * n, p.z * n));
}
/// @brief Calculates the unitized equivalent of a 3D line.
///
/// Multiplies the 3D line \c l by the inverse magnitude of its weight, which is the 3D direction component.
/// The direction component of the returned line has unit length, and the magnitude of its moment component
/// is the perpendicular distance between the origin and the line.
///
/// @relatedalso Line3D
inline Line3D Unitize(const Line3D& l)
{
return (l * InverseSqrt(l.v.x * l.v.x + l.v.y * l.v.y + l.v.z * l.v.z));
}
/// @brief Calculates the unitized equivalent of a 3D plane.
///
/// Multiplies the 3D plane \c g by the inverse magnitude of its weight, which is the 3D bivector given by
/// its <i>x</i>, <i>y</i>, and <i>z</i> coordinates. The returned plane has a unit-length normal.
/// If the <i>x</i>, <i>y</i>, and <i>z</i> coordinates are all zero, then the result is undefined.
///
/// @relatedalso Plane3D
inline Plane3D Unitize(const Plane3D& g)
{
return (g * InverseSqrt(g.x * g.x + g.y * g.y + g.z * g.z));
}
// ==============================================
// Dot
// ==============================================
/// @brief Returns the dot product between 3D flat points \c a and \c b.
/// @relatedalso FlatPoint3D
inline float Dot(const FlatPoint3D& a, const FlatPoint3D& b)
{
return (a.x * b.x + a.y * b.y + a.z * b.z);
}
/// @brief Returns the dot product between 3D lines \c k and \c l.
/// @relatedalso Line3D
inline float Dot(const Line3D& k, const Line3D& l)
{
return (k.m.x * l.m.x + k.m.y * l.m.y + k.m.z * l.m.z);
}
/// @brief Returns the dot product between 3D planes \c g and \c h.
/// @relatedalso Plane3D
inline float Dot(const Plane3D& g, const Plane3D& h)
{
return (g.w * h.w);
}
// ==============================================
// Antidot
// ==============================================
/// @brief Returns the antidot product between 3D flat points \c a and \c b.
/// @relatedalso FlatPoint3D
inline float Antidot(const FlatPoint3D& a, const FlatPoint3D& b)
{
return (a.w * b.w);
}
/// @brief Returns the antidot product between 3D lines \c k and \c l.
/// @relatedalso Line3D
inline float Antidot(const Line3D& k, const Line3D& l)
{
return (k.v.x * l.v.x + k.v.y * l.v.y + k.v.z * l.v.z);
}
/// @brief Returns the dot product between 3D planes \c g and \c h.
/// @relatedalso Plane3D
inline float Antidot(const Plane3D& g, const Plane3D& h)
{
return (g.x * h.x + g.y * h.y + g.z * h.z);
}
// ==============================================
// Translate
// ==============================================
/// @brief Translates the 3D flat point \c p by the vector \c t.
/// @relatedalso FlatPoint3D
inline FlatPoint3D Translate(const FlatPoint3D& p, const Vector3D& t)
{
return (FlatPoint3D(p.xyz + t.xyz * p.w, p.w));
}
/// @brief Translates the 3D line \c l by the vector \c t.
/// @relatedalso Line3D
inline Line3D Translate(const Line3D& l, const Vector3D& t)
{
return (Line3D(l.v, l.m + (t ^ l.v)));
}
/// @brief Translates the 3D plane \c g by the vector \c t.
/// @relatedalso Plane3D
inline Plane3D Translate(const Plane3D& g, const Vector3D& t)
{
return (Plane3D(g.xyz, g.w - g.x * t.x - g.y * t.y - g.z * t.z));
}
// ==============================================
// Join
// ==============================================
/// @brief Calculates the join of the 3D flat points \c p and \c q to produce a 3D line.
/// @relatedalso Line3D
inline Line3D Wedge(const FlatPoint3D& p, const FlatPoint3D& q)
{
return (Line3D(p.w * q.x - p.x * q.w, p.w * q.y - p.y * q.w, p.w * q.z - p.z * q.w, p.y * q.z - p.z * q.y, p.z * q.x - p.x * q.z, p.x * q.y - p.y * q.x));
}
/// @brief Calculates the join of the 3D Euclidean points \c p and \c q to produce a 3D line.
/// @relatedalso Line3D
inline Line3D Wedge(const Point3D& p, const Point3D& q)
{
return (Line3D(q.x - p.x, q.y - p.y, q.z - p.z, p.y * q.z - p.z * q.y, p.z * q.x - p.x * q.z, p.x * q.y - p.y * q.x));
}
/// @brief Calculates the join of the 3D Euclidean point \c p and 3D direction vector \c v to produce a 3D line.
/// @relatedalso Line3D
inline Line3D Wedge(const Point3D& p, const Vector3D& v)
{
return (Line3D(v.x, v.y, v.z, p.y * v.z - p.z * v.y, p.z * v.x - p.x * v.z, p.x * v.y - p.y * v.x));
}
/// @brief Calculates the join of the 3D line \c l and 3D flat point \c p to produce a 3D plane.
/// @relatedalso Plane3D
inline Plane3D Wedge(const Line3D& l, const FlatPoint3D& p)
{
return (Plane3D(l.v.y * p.z - l.v.z * p.y + l.m.x * p.w,