-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfusion_util.py
248 lines (199 loc) · 9.66 KB
/
fusion_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import torch
import glob
import math
import numpy as np
from PIL import Image
def make_intrinsic(fx, fy, mx, my):
'''Create camera intrinsics.'''
intrinsic = np.eye(4)
intrinsic[0][0] = fx
intrinsic[1][1] = fy
intrinsic[0][2] = mx
intrinsic[1][2] = my
return intrinsic
def adjust_intrinsic(intrinsic, intrinsic_image_dim, image_dim):
'''Adjust camera intrinsics.'''
if intrinsic_image_dim == image_dim:
return intrinsic
resize_width = int(math.floor(image_dim[1] * float(
intrinsic_image_dim[0]) / float(intrinsic_image_dim[1])))
intrinsic[0, 0] *= float(resize_width) / float(intrinsic_image_dim[0])
intrinsic[1, 1] *= float(image_dim[1]) / float(intrinsic_image_dim[1])
# account for cropping here
intrinsic[0, 2] *= float(image_dim[0] - 1) / float(intrinsic_image_dim[0] - 1)
intrinsic[1, 2] *= float(image_dim[1] - 1) / float(intrinsic_image_dim[1] - 1)
return intrinsic
def extract_lseg_img_feature(img_dir, transform, evaluator, label=''):
# load RGB image
image = Image.open(img_dir)
image = np.array(image)
image = transform(image).unsqueeze(0)
with torch.no_grad():
outputs = evaluator.parallel_forward(image, label)
feat_2d = outputs[0][0].half()
return feat_2d
def pc2voxel():
pc_dir = 'dataset/lseg_features'
scan_dir = 'dataset/ScanNet/scans'
save_dir = 'dataset/lseg_voxels'
voxel_size = 0.05
os.makedirs(save_dir, exist_ok=True)
pc_pos_aligned_lengths = []
for id, scene_id in enumerate(os.listdir(pc_dir)):
if id % 10 == 0:
print('Processing %d-th scene...' % id)
pc_pos = torch.load(os.path.join(pc_dir, scene_id, 'pcd_pos.pt'))
pc_pos = np.array(pc_pos)
meta_file = open(os.path.join(scan_dir, scene_id, scene_id + '.txt'), 'r').readlines()
axis_align_matrix = None
for line in meta_file:
if 'axisAlignment' in line:
axis_align_matrix = [float(x) for x in line.rstrip().strip('axisAlignment = ').split(' ')]
if axis_align_matrix != None:
axis_align_matrix = np.array(axis_align_matrix).reshape((4, 4))
axis_align_matrix = axis_align_matrix if axis_align_matrix is not None else np.eye(4)
pc_pos_4 = np.concatenate([pc_pos, np.ones((pc_pos.shape[0], 1))], axis=1)
pc_pos_aligned = pc_pos_4 @ axis_align_matrix.transpose()
pc_pos_aligned = pc_pos_aligned[:, :3]
if pc_pos_aligned.shape[0] != 0:
pc_pos_aligned = voxelize_pc(pc_pos_aligned, voxel_size)
# save voxelized point cloud
np.save(os.path.join(save_dir, scene_id + '.npy'), pc_pos_aligned)
def voxelize_pc(pc_pos_aligned, voxel_size=0.05):
'''pc_pos_aligned: array [3]'''
# translate point with smallest coordinate to origin
pc_pos_aligned = pc_pos_aligned - pc_pos_aligned.min(axis=0)
# voxelization
pc_pos_aligned = np.floor(pc_pos_aligned / voxel_size)
return pc_pos_aligned
def save_fused_feature_with_locs(feat_bank, point_ids, locs_in, n_points, out_dir, scene_id, args):
'''Save features and locations and aligned voxels.'''
if n_points < args.n_split_points:
n_points_cur = n_points # to handle point cloud numbers less than n_split_points
else:
n_points_cur = args.n_split_points
rand_ind = np.random.choice(range(n_points), n_points_cur, replace=False)
mask_entire = torch.zeros(n_points, dtype=torch.bool)
mask_entire[rand_ind] = True
mask = torch.zeros(n_points, dtype=torch.bool)
mask[point_ids] = True
mask_entire = mask_entire & mask
# read in axis alignment matrix
#meta_file = open(os.path.join(args.scan_dir, scene_id, scene_id + '.txt'), 'r').readlines()
# axis_align_matrix = None
# for line in meta_file:
# if 'axisAlignment' in line:
# axis_align_matrix = [float(x) for x in line.rstrip().strip('axisAlignment = ').split(' ')]
# if axis_align_matrix != None:
# axis_align_matrix = np.array(axis_align_matrix).reshape((4, 4))
#axis_align_matrix = axis_align_matrix if axis_align_matrix is not None else np.eye(4)
axis_align_matrix = np.eye(4)
pcd_pos = locs_in[mask_entire]
pcd_pos_4 = np.concatenate([pcd_pos, np.ones((pcd_pos.shape[0], 1))], axis=1)
pc_pos_aligned = pcd_pos_4 @ axis_align_matrix.transpose()
pc_pos_aligned = pc_pos_aligned[:, :3]
args.voxel_size = 0.05
if pc_pos_aligned.shape[0] != 0:
pcd_pos_vox = voxelize_pc(pc_pos_aligned, args.voxel_size)
else:
pcd_pos_vox = np.zeros((0, 3))
out_dir_features = os.path.join(out_dir, args.prefix+'_features')
out_dir_voxels = os.path.join(out_dir, args.prefix+'_voxels')
out_dir_points = os.path.join(out_dir, args.prefix+'_points')
os.makedirs(out_dir_features, exist_ok=True)
os.makedirs(out_dir_voxels, exist_ok=True)
os.makedirs(out_dir_points, exist_ok=True)
torch.save({"feat": feat_bank[mask_entire].half().cpu(),
"mask_full": mask_entire
}, os.path.join(out_dir_features, scene_id+'.pt'))
np.save(os.path.join(out_dir_voxels, scene_id+'.npy'), pcd_pos_vox)
np.save(os.path.join(out_dir_points, scene_id+'.npy'), pcd_pos)
print('Scene {} is saved!'.format(scene_id))
class PointCloudToImageMapper(object):
def __init__(self, image_dim,
visibility_threshold=0.25, cut_bound=0, intrinsics=None):
self.image_dim = image_dim
self.vis_thres = visibility_threshold
self.cut_bound = cut_bound
self.intrinsics = intrinsics
def compute_mapping(self, camera_to_world, coords, depth=None, intrinsic=None):
"""
:param camera_to_world: 4 x 4
:param coords: N x 3 format
:param depth: H x W format
:param intrinsic: 3x3 format
:return: mapping, N x 3 format, (H,W,mask)
"""
if self.intrinsics is not None: # global intrinsics
intrinsic = self.intrinsics
mapping = np.zeros((3, coords.shape[0]), dtype=int)
coords_new = np.concatenate([coords, np.ones([coords.shape[0], 1])], axis=1).T
assert coords_new.shape[0] == 4, "[!] Shape error"
world_to_camera = np.linalg.inv(camera_to_world)
p = np.matmul(world_to_camera, coords_new)
p[0] = (p[0] * intrinsic[0][0]) / p[2] + intrinsic[0][2]
p[1] = (p[1] * intrinsic[1][1]) / p[2] + intrinsic[1][2]
pi = np.round(p).astype(int) # simply round the projected coordinates
inside_mask = (pi[0] >= self.cut_bound) * (pi[1] >= self.cut_bound) \
* (pi[0] < self.image_dim[0]-self.cut_bound) \
* (pi[1] < self.image_dim[1]-self.cut_bound)
if depth is not None:
depth_cur = depth[pi[1][inside_mask], pi[0][inside_mask]]
occlusion_mask = np.abs(depth[pi[1][inside_mask], pi[0][inside_mask]]
- p[2][inside_mask]) <= \
self.vis_thres * depth_cur
inside_mask[inside_mask == True] = occlusion_mask
else:
front_mask = p[2]>0 # make sure the depth is in front
inside_mask = front_mask*inside_mask
mapping[0][inside_mask] = pi[1][inside_mask]
mapping[1][inside_mask] = pi[0][inside_mask]
mapping[2][inside_mask] = 1
return mapping.T
def obtain_intr_extr_matterport(scene):
'''Obtain the intrinsic and extrinsic parameters of Matterport3D.'''
img_dir = os.path.join(scene, 'color')
pose_dir = os.path.join(scene, 'pose')
intr_dir = os.path.join(scene, 'intrinsic')
img_names = sorted(glob.glob(img_dir+'/*.jpg'))
intrinsics = []
extrinsics = []
for img_name in img_names:
name = img_name.split('/')[-1][:-4]
extrinsics.append(np.loadtxt(os.path.join(pose_dir, name+'.txt')))
intrinsics.append(np.loadtxt(os.path.join(intr_dir, name+'.txt')))
intrinsics = np.stack(intrinsics, axis=0)
extrinsics = np.stack(extrinsics, axis=0)
img_names = np.asarray(img_names)
return img_names, intrinsics, extrinsics
def get_matterport_camera_data(data_path, locs_in, args):
'''Get all camera view related infomation of Matterport3D.'''
# find bounding box of the current region
bbox_l = locs_in.min(axis=0)
bbox_h = locs_in.max(axis=0)
building_name = data_path.split('/')[-1].split('_')[0]
scene_id = data_path.split('/')[-1].split('.')[0]
scene = os.path.join(args.data_root_2d, building_name)
img_names, intrinsics, extrinsics = obtain_intr_extr_matterport(scene)
cam_loc = extrinsics[:, :3, -1]
ind_in_scene = (cam_loc[:, 0] > bbox_l[0]) & (cam_loc[:, 0] < bbox_h[0]) & \
(cam_loc[:, 1] > bbox_l[1]) & (cam_loc[:, 1] < bbox_h[1]) & \
(cam_loc[:, 2] > bbox_l[2]) & (cam_loc[:, 2] < bbox_h[2])
img_names_in = img_names[ind_in_scene]
intrinsics_in = intrinsics[ind_in_scene]
extrinsics_in = extrinsics[ind_in_scene]
num_img = len(img_names_in)
# some regions have no views inside, we consider it differently for test and train/val
if args.split == 'test' and num_img == 0:
print('no views inside {}, take the nearest 100 images to fuse'.format(scene_id))
#! take the nearest 100 views for feature fusion of regions without inside views
centroid = (bbox_l+bbox_h)/2
dist_centroid = np.linalg.norm(cam_loc-centroid, axis=-1)
ind_in_scene = np.argsort(dist_centroid)[:100]
img_names_in = img_names[ind_in_scene]
intrinsics_in = intrinsics[ind_in_scene]
extrinsics_in = extrinsics[ind_in_scene]
num_img = 100
img_names_in = img_names_in.tolist()
return intrinsics_in, extrinsics_in, img_names_in, scene_id, num_img