- 左侧:多项式线性回归、Tanh激活函数; 右侧:线性嵌入式向量。
- Left figure: polynomial linear regression, tanh activation; right figure: Linear Embedding.
- 训练性能提升近百倍。
- Nearly hundred times improvement in training.
- 非常接近“全局最优点”。
- Very close to "global best"
- 每一个数据训练所有参数。
- Every data train All parameters; All parameters are trained by Each data.
- 每一个参数参与每一次推断。
- Every parameter participates in Each inference; Each inference is base on All parameters.
- 分“箱”后,相邻箱过于独立,导致“不圆滑”。
- After the "box" is divided, the boxes nearby are too independent, which makes results in "not smooth".
- 稀疏特征导致后端网络规模过大,容易过拟合。
- Sparse features make back-end to large and overfitting easily.
- 每个值域有各自的向量。
- Each value field has its own vector.
- 对每一个输入值,用所在值域、周边值域的“向量”乘以“权重”和表征。
- Each input can be described by the sum of "vector" multiply "weight".
- 每个向量的“权重”与输入值与值域中点的距离相关。
- The "weight" of each vector is related to the distance between the input and the middle of the value field.
- 通过设定“takecare”参数,控制周边值域“向量”的"权重"。
- By setting the "takecare" parameter can control the "weight" of "vector".
- 防止过于“独立”导致的“过拟合”、“不圆滑”。
- Prevent "over fitting" and "non smoothness" caused by less takecare.
- 防止过于“takecare”导致拟合能力不足。
- Prevent "under fitting" caused by over takecare.

- 根据上图可见,当takcare当前值域60%时,只需5个值域的向量参与训练、推断。
- According to the figure above, when takcare is 60%, only 5 vectors are needed in training and inference.
- 有多个输入时,每个输入各自“向量化”, 将结果合并输入后端网络。
- When there are multiple inputs, each input is "vectorized" to merge and feed into the back-end.
- 后端可以是各种网络, 例如:全连接、LSTM......
- Back-end can be all kinds of net, like full connection, LSTM......
- 累计各值域损失: 大于预期的值域进行分裂,小于预期的值域与周围值域合并。
- By accumulating the loss of each value field: larger than expected will be split, less than expected will be merged.
- 线性嵌入式向量的输出维度固定,前端网络伸缩后,后端网络无需重新构建,只需进行少量训练。
- When the output dimension of linear embedding is fixed , after the front-end expand and shrink, the back-end do not need rebuild, only need a little training.
- 2周内升级PLUS版本。
- Upgrade PLUS version in 2 weeks.
