Skip to content

Commit 52eca3b

Browse files
committed
color correction and version bump
1 parent a93c3b5 commit 52eca3b

File tree

1 file changed

+16
-59
lines changed

1 file changed

+16
-59
lines changed

image_textRemove.py

+16-59
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@
1616
from difflib import SequenceMatcher
1717
import hashlib
1818

19-
__version__ = '1.1.7'
19+
__version__ = '1.1.8'
2020

2121
DISPLAY_TITLE = r"""
2222
_ _ _ _ ______
@@ -39,15 +39,13 @@
3939
help='output file type(only the extension)')
4040
parser.add_argument('-j', '--filterTextFromJSON', default='anonymizedTags.json', type=str,
4141
help='A dictionary of dicom tags and their values')
42-
parser.add_argument('-r', '--replaceTextFromJSON', default='replaceTags.json', type=str,
43-
help='A dictionary of dicom tags and their replacement values')
4442
parser.add_argument('-t', '--threshold', default=0.8, type=float,
4543
help='threshold of similarity ration between two words')
46-
parser.add_argument( '--pftelDB',
47-
dest = 'pftelDB',
48-
default = '',
49-
type = str,
50-
help = 'optional pftel server DB path')
44+
parser.add_argument('--pftelDB',
45+
dest='pftelDB',
46+
default='',
47+
type=str,
48+
help='optional pftel server DB path')
5149

5250

5351
# The main function of this *ChRIS* plugin is denoted by this ``@chris_plugin`` "decorator."
@@ -63,8 +61,8 @@
6361
min_gpu_limit=0 # set min_gpu_limit=1 to enable GPU
6462
)
6563
@pflog.tel_logTime(
66-
event = 'image_textRemove',
67-
log = 'Remove text from image'
64+
event='image_textRemove',
65+
log='Remove text from image'
6866
)
6967
def main(options: Namespace, inputdir: Path, outputdir: Path):
7068
"""
@@ -86,34 +84,24 @@ def main(options: Namespace, inputdir: Path, outputdir: Path):
8684
#
8785
# Refer to the documentation for more options, examples, and advanced uses e.g.
8886
# adding a progress bar and parallelism.
89-
json_data_path=''
87+
json_data_path = ''
9088
l_json_path = list(inputdir.glob('**/*.json'))
9189
for json_path in l_json_path:
9290
if json_path.name == options.filterTextFromJSON:
9391
json_data_path = json_path
9492
try:
9593
f = open(json_data_path, 'r')
9694
data = json.load(f)
97-
except Exception as ex:
98-
print("Error: ",ex)
99-
# To be removed later
100-
replace_json_data_path = ''
101-
l_replace_json_path = list(inputdir.glob('**/*.json'))
102-
for json_path in l_replace_json_path:
103-
if json_path.name == options.replaceTextFromJSON:
104-
replace_json_data_path = json_path
105-
try:
106-
f = open(replace_json_data_path, 'r')
107-
replace_data = json.load(f)
10895
except Exception as ex:
10996
print("Error: ", ex)
97+
11098
box_list = []
11199
mapper = PathMapper.file_mapper(inputdir, outputdir, glob=f"**/*.{options.fileFilter}", fail_if_empty=False)
112100
for input_file, output_file in mapper:
113101
# The code block below is a small and easy example of how to use a ``PathMapper``.
114102
# It is recommended that you put your functionality in a helper function, so that
115103
# it is more legible and can be unit tested.
116-
box_list, final_image = inpaint_text(str(input_file), data, replace_data, box_list, options.threshold)
104+
box_list, final_image = inpaint_text(str(input_file), data, box_list, options.threshold)
117105
img_rgb = cv2.cvtColor(final_image, cv2.COLOR_BGR2RGB)
118106
output_file = str(output_file).replace(options.fileFilter, options.outputType)
119107
print(f"Saving output file as ----->{output_file}<-----\n\n")
@@ -126,41 +114,30 @@ def midpoint(x1, y1, x2, y2):
126114
return x_mid, y_mid
127115

128116

129-
def inpaint_text(img_path, data, replace_data, box_list, similarity_threshold):
117+
def inpaint_text(img_path, data, box_list, similarity_threshold):
130118
word_list = []
131-
d_replace_text = {}
132119
for item in data.keys():
133120
if item == 'PatientName':
134-
anon_name = replace_data.get(item).split('^')
135121
real_name = data.get(item).split('^')
136122
for i in range(len(real_name)):
137123
word_list.append(real_name[i])
138-
d_replace_text[real_name[i]] = anon_name[i]
139124
elif item == 'PatientBirthDate':
140125
yyyy = data.get(item)[0:4]
141126
mm = data.get(item)[4:6]
142127
dd = data.get(item)[6:8]
143-
yyyy1 = replace_data.get(item)[0:4]
144-
mm1 = replace_data.get(item)[4:6]
145-
dd1 = replace_data.get(item)[6:8]
146128
word_list.append(f'{mm}1{dd}1{yyyy}')
147-
d_replace_text[f'{mm}1{dd}1{yyyy}'] = f'{mm1}/{dd1}/{yyyy1}'
148129
else:
149130
word_list.append(data.get(item))
150-
d_replace_text[data.get(item)] = replace_data.get(item)
151-
print(d_replace_text)
152131
# read image
153132
print(f"Reading input file from ---->{img_path}<----")
154-
img = cv2.imread(img_path)
133+
img = cv2.imread(img_path, cv2.COLOR_BGR2RGB)
134+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
155135
if not len(box_list):
156136
pipeline = keras_ocr.pipeline.Pipeline()
157137
# # generate (word, box) tuples
158138
box_list = pipeline.recognize([img])[0]
159139

160-
161140
mask = np.zeros(img.shape[:2], dtype="uint8")
162-
l_coordinates = []
163-
l_text = []
164141
for box in box_list:
165142
if (box[0].upper() in word_list) or close_to_similar(box[0].upper(), word_list, similarity_threshold):
166143
print(f"Removing {box[0].upper()} from image")
@@ -175,32 +152,11 @@ def inpaint_text(img_path, data, replace_data, box_list, similarity_threshold):
175152
thickness = int(math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2))
176153

177154
cv2.line(mask, (x_mid0, y_mid0), (x_mid1, y_mi1), 255,
178-
thickness)
155+
thickness)
179156
img = cv2.inpaint(img, mask, 7, cv2.INPAINT_NS)
180-
org = (round(x3),round(y3))
181-
l_coordinates.append(org)
182-
if box[0].upper() in d_replace_text:
183-
l_text.append(d_replace_text[box[0].upper()])
184-
else:
185-
word = close_to_similar(box[0].upper(), word_list, similarity_threshold)
186-
l_text.append(d_replace_text[word])
187-
188-
color = (235, 235, 235)
189-
print(l_text)
190-
for org,text in zip(l_coordinates,l_text):
191-
#text = generate_hash_text(text)
192-
img = cv2.putText(img, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2)
193157

194158
return box_list, img
195159

196-
def generate_hash_text(input_text: str) -> str:
197-
"""
198-
Given an input text, generate a md5 hash and
199-
return a hashed text of the original text's length
200-
"""
201-
result = hashlib.md5(input_text.encode())
202-
203-
return result.hexdigest()[0:len(input_text)].upper()
204160

205161
def read_input_dicom(input_file_path):
206162
"""
@@ -239,6 +195,7 @@ def similar(a: str, b: str):
239195
"""
240196
return SequenceMatcher(None, a, b).ratio()
241197

198+
242199
def close_to_similar(target: str, wordlist: str, similarity_threshold: float):
243200
for word in wordlist:
244201
if similar(target, word) >= similarity_threshold:

0 commit comments

Comments
 (0)