Skip to content

[Bug Report] Misleading doc on autoresetting #1356

Open
@vmoens

Description

@vmoens

Describe the bug

The doc on autoresetting states this:

Disabled Mode

No automatic resetting occurs and users need to manually reset the sub-environment through a mask, env.reset(mask=np.array([True, False, ...], dtype=bool)). The easier way of generating this mask is np.logical_or(terminations, truncations). This makes training code closer to single vector training code, however, can be slower is some cases due to running another function.

import gymnasium as gym
import numpy as np
from collections import deque

# Initialize environment, buffer and episode_start
envs = gym.vector.SyncVectorEnv(
    [lambda: gym.make("CartPole-v1") for _ in range(2)],
    autoreset_mode=gym.vector.AutoresetMode.DISABLED
)
replay_buffer = deque(maxlen=100)

observations, _ = envs.reset()
while True:   # Training loop
    actions = policy(observations)
    next_observations, rewards, terminations, truncations, infos = envs.step(actions)

    # Add to replay buffer
    for i in range(envs.num_envs):
        replay_buffer.append((observations[i], actions[i], rewards[i], terminations[i], next_observations[i]))

    # update observation
    autoreset = np.logical_or(terminations, truncations)
    if np.any(autoreset):
        observations = envs.reset(options={"mask": autoreset})
    else:
        observations = next_observations
envs.close()

This is misleading:

env.reset(mask=np.array([True, False, ...], dtype=bool))

It should be

env.reset(options={"reset_mask": np.array([True, False, ...], dtype=bool)})

This is also wrong:

    if np.any(autoreset):
        observations = envs.reset(options={"mask": autoreset})
    else:
        observations = next_observations

It should be

    if np.any(autoreset):
        observations = envs.reset(options={"reset_mask": autoreset})
    else:
        observations = next_observations

happy to propose a patch, IDK where the doc is hosted though.

Code example

System info

No response

Additional context

No response

Checklist

  • I have checked that there is no similar issue in the repo

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions