This repository was archived by the owner on Feb 21, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 232
/
Copy pathrow.go
711 lines (624 loc) · 17.3 KB
/
row.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
// Copyright 2022 Molecula Corp. (DBA FeatureBase).
// SPDX-License-Identifier: Apache-2.0
package pilosa
import (
"encoding/json"
"sort"
pb "github.com/featurebasedb/featurebase/v3/proto"
"github.com/featurebasedb/featurebase/v3/roaring"
"github.com/pkg/errors"
)
// Row is a set of integers (the associated columns).
type Row struct {
segments []rowSegment
// String keys translated to/from segment columns.
Keys []string
// Index tells what index this row is from - needed for key translation.
Index string
// Field tells what field this row is from if it's a "vertical"
// row. It may be the result of a Distinct query or Rows
// query. Knowing the index and field, we can figure out how to
// interpret the row data.
Field string
// NoSplit indicates that this row may not be split.
// This is used for `Rows` calls in a GroupBy.
NoSplit bool
}
// NewRow returns a new instance of Row.
func NewRow(columns ...uint64) *Row {
r := &Row{}
for _, i := range columns {
r.SetBit(i)
}
return r
}
func (r *Row) Clone() (clone *Row) {
if r == nil {
return nil
}
var keyClone []string
if len(r.Keys) > 0 {
keyClone = make([]string, len(r.Keys))
copy(keyClone, r.Keys)
}
clone = &Row{
Keys: keyClone,
Index: r.Index,
Field: r.Field,
}
for _, seg := range r.segments {
segClone := rowSegment{
shard: seg.shard,
writable: true, // we know it is safe; it is a copy.
n: seg.n,
}
if seg.data != nil {
segClone.data = seg.data.Clone() // *roaring.Bitmap
}
//segClone.InvalidateCount() // not needed?
clone.segments = append(clone.segments, segClone)
}
return clone
}
// NewRowFromBitmap divides a bitmap into rows, which it now calls shards. This
// transposes; data that was in any shard for Row 0 is now considered shard 0,
// etcetera.
func NewRowFromBitmap(b *roaring.Bitmap) *Row {
r := &Row{}
if b == nil {
return r
}
rowNum := uint64(0)
for col, ok := b.MinAt(rowNum * ShardWidth); ok; col, ok = b.MinAt(rowNum * ShardWidth) {
rowNum = col / ShardWidth
seg := rowSegment{
shard: rowNum,
data: b.OffsetRange(rowNum*ShardWidth, rowNum*ShardWidth, (rowNum+1)*ShardWidth),
writable: true,
}
seg.n = seg.data.Count()
r.segments = append(r.segments, seg)
rowNum++
}
return r
}
// NewRowFromRoaring parses a roaring data file as a row, dividing it into
// bitmaps and rowSegments based on shard width.
func NewRowFromRoaring(data []byte) *Row {
bitmaps, shards := roaring.RoaringToBitmaps(data, ShardWidth)
r := &Row{segments: make([]rowSegment, len(bitmaps))}
for i := range bitmaps {
segment := rowSegment{
shard: shards[i],
data: bitmaps[i],
writable: false,
n: bitmaps[i].Count(),
}
r.segments[i] = segment
}
return r
}
// ToTable implements the ToTabler interface.
func (r *Row) ToTable() (*pb.TableResponse, error) {
var n int
if len(r.Keys) > 0 {
n = len(r.Keys)
} else {
n = len(r.Columns())
}
return pb.RowsToTable(r, n)
}
// Hash calculate checksum code be useful in block hash join
func (r *Row) Hash() uint64 {
hash := uint64(0)
for i := range r.segments {
hash = r.segments[i].data.Hash(hash)
}
return hash
}
// ToRows implements the ToRowser interface.
func (r *Row) ToRows(callback func(*pb.RowResponse) error) error {
if len(r.Keys) > 0 {
// Column keys
ci := []*pb.ColumnInfo{
{Name: "_id", Datatype: "string"},
}
for _, x := range r.Keys {
if err := callback(&pb.RowResponse{
Headers: ci,
Columns: []*pb.ColumnResponse{
{ColumnVal: &pb.ColumnResponse_StringVal{StringVal: x}},
}}); err != nil {
return errors.Wrap(err, "calling callback")
}
ci = nil //only send on the first
}
} else {
// Column IDs
ci := []*pb.ColumnInfo{
{Name: "_id", Datatype: "uint64"},
}
for _, x := range r.Columns() {
if err := callback(&pb.RowResponse{
Headers: ci,
Columns: []*pb.ColumnResponse{
{ColumnVal: &pb.ColumnResponse_Uint64Val{Uint64Val: x}},
}}); err != nil {
return errors.Wrap(err, "calling callback")
}
ci = nil //only send on the first
}
}
return nil
}
// Roaring returns the row treated as a unified roaring bitmap.
func (r *Row) Roaring() []byte {
bitmaps := make([]*roaring.Bitmap, len(r.segments))
for i := range r.segments {
bitmaps[i] = r.segments[i].data
}
return roaring.BitmapsToRoaring(bitmaps)
}
// IsEmpty returns true if the row doesn't contain any set bits.
func (r *Row) IsEmpty() bool {
if len(r.segments) == 0 {
return true
}
for i := range r.segments {
if r.segments[i].n > 0 {
return false
}
}
return true
}
func (r *Row) Freeze() {
for _, s := range r.segments {
s.Freeze()
}
}
// Merge merges data from other into r.
func (r *Row) Merge(other *Row) {
var segments []rowSegment
itr := newMergeSegmentIterator(r.segments, other.segments)
for s0, s1 := itr.next(); s0 != nil || s1 != nil; s0, s1 = itr.next() {
// Use the other row's data if segment is missing.
if s0 == nil {
segments = append(segments, *s1)
continue
} else if s1 == nil {
segments = append(segments, *s0)
continue
}
// Otherwise merge.
s0.Merge(s1)
segments = append(segments, *s0)
}
r.segments = segments
r.invalidateCount()
}
// intersectionCount returns the number of intersections between r and other.
func (r *Row) intersectionCount(other *Row) uint64 {
var n uint64
itr := newMergeSegmentIterator(r.segments, other.segments)
for s0, s1 := itr.next(); s0 != nil || s1 != nil; s0, s1 = itr.next() {
// Ignore non-overlapping segments.
if s0 == nil || s1 == nil {
continue
}
n += s0.IntersectionCount(s1)
}
return n
}
// Intersect returns the itersection of r and other.
func (r *Row) Intersect(other *Row) *Row {
var segments []rowSegment
itr := newMergeSegmentIterator(r.segments, other.segments)
for s0, s1 := itr.next(); s0 != nil || s1 != nil; s0, s1 = itr.next() {
// Ignore non-overlapping segments.
if s0 == nil || s1 == nil {
continue
}
segments = append(segments, *s0.Intersect(s1))
}
return &Row{segments: segments}
}
// Any returns true if row contains any bits.
func (r *Row) Any() bool {
for _, s := range r.segments {
if s.data.Any() {
return true
}
}
return false
}
// Xor returns the xor of r and other.
func (r *Row) Xor(other *Row) *Row {
var segments []rowSegment
itr := newMergeSegmentIterator(r.segments, other.segments)
for s0, s1 := itr.next(); s0 != nil || s1 != nil; s0, s1 = itr.next() {
if s1 == nil {
segments = append(segments, *s0)
continue
} else if s0 == nil {
segments = append(segments, *s1)
continue
}
segments = append(segments, *s0.Xor(s1))
}
return &Row{segments: segments}
}
// Union returns the bitwise union of r and other.
func (r *Row) Union(others ...*Row) *Row {
segments := make([][]rowSegment, 0, len(others)+1)
if len(r.segments) > 0 {
segments = append(segments, r.segments)
}
nextSegs := make([][]rowSegment, 0, len(others)+1)
toProcess := make([]*rowSegment, 0, len(others)+1)
var output []rowSegment
for _, other := range others {
if len(other.segments) > 0 {
segments = append(segments, other.segments)
}
}
for len(segments) > 0 {
shard := segments[0][0].shard
for _, segs := range segments {
if segs[0].shard < shard {
shard = segs[0].shard
}
}
nextSegs = nextSegs[:0]
toProcess = toProcess[:0]
for _, segs := range segments {
if segs[0].shard == shard {
toProcess = append(toProcess, &segs[0])
segs = segs[1:]
}
if len(segs) > 0 {
nextSegs = append(nextSegs, segs)
}
}
// at this point, "toProcess" is a list of all the segments
// sharing the lowest ID, and nextSegs is a list of all the others.
// Swap the segment lists (so we don't have to reallocate it)
segments, nextSegs = nextSegs, segments
if len(toProcess) == 1 {
output = append(output, *toProcess[0])
} else {
output = append(output, *toProcess[0].Union(toProcess[1:]...))
}
}
return &Row{Index: r.Index, Field: r.Field, segments: output}
}
// Difference returns the diff of r and other.
func (r *Row) Difference(others ...*Row) *Row {
var output []rowSegment
o := make(map[uint64][]*rowSegment)
for x := range others {
for y := range others[x].segments {
segment := others[x].segments[y]
o[segment.shard] = append(o[segment.shard], &segment)
}
}
for _, segment := range r.segments {
dest, ok := o[segment.shard]
if ok {
output = append(output, *segment.Difference(dest...))
} else {
output = append(output, segment)
}
}
return &Row{segments: output}
}
// Shift returns the bitwise shift of r by n bits.
// Currently only positive shift values are supported.
//
// NOTE: the Shift method is currently unsupported, and
// is considerred to be incorrect. Please DO NOT use it.
// We are leaving it here in case someone internally wants
// to use it with the understanding that the results may
// be incorrect.
//
// Why unsupported? For a full description, see:
// https://github.com/molecula/pilosa/issues/403.
// In short, the current implementation will shift a bit
// at the edge of a shard out of the shard and into a
// container which is assumed to be an invalid container
// for the shard. So for example, shifting the last bit
// of shard 0 (containers 0-15) will shift that bit out
// to container 16. While this "sort of" works, it
// breaks an assumption about containers, and might stop
// working in the future if that assumption is enforced.
func (r *Row) Shift(n int64) (*Row, error) {
if n < 0 {
return nil, errors.New("cannot shift by negative values")
} else if n == 0 {
return r, nil
}
work := r
var segments []rowSegment
for i := int64(0); i < n; i++ {
segments = segments[:0]
for _, segment := range work.segments {
shifted, err := segment.Shift()
if err != nil {
return nil, errors.Wrap(err, "shifting row segment")
}
segments = append(segments, *shifted)
}
work = &Row{segments: segments}
}
return work, nil
}
// SetBit sets the i-th column of the row.
func (r *Row) SetBit(i uint64) (changed bool) {
return r.createSegmentIfNotExists(i / ShardWidth).SetBit(i)
}
// Segments returns a list of all segments in the row.
func (r *Row) Segments() []rowSegment {
return r.segments
}
// segment returns a segment for a given shard.
// Returns nil if segment does not exist.
func (r *Row) segment(shard uint64) *rowSegment {
if i := sort.Search(len(r.segments), func(i int) bool {
return r.segments[i].shard >= shard
}); i < len(r.segments) && r.segments[i].shard == shard {
return &r.segments[i]
}
return nil
}
func (r *Row) createSegmentIfNotExists(shard uint64) *rowSegment {
i := sort.Search(len(r.segments), func(i int) bool {
return r.segments[i].shard >= shard
})
// Return exact match.
if i < len(r.segments) && r.segments[i].shard == shard {
return &r.segments[i]
}
// Insert new segment.
r.segments = append(r.segments, rowSegment{data: roaring.NewSliceBitmap()})
if i < len(r.segments) {
copy(r.segments[i+1:], r.segments[i:])
}
r.segments[i] = rowSegment{
data: roaring.NewSliceBitmap(),
shard: shard,
writable: true,
}
return &r.segments[i]
}
// invalidateCount updates the cached count in the row.
func (r *Row) invalidateCount() {
for i := range r.segments {
r.segments[i].InvalidateCount()
}
}
// Count returns the number of columns in the row.
func (r *Row) Count() uint64 {
var n uint64
if r == nil {
// Count(Distinct()) on an empty field panics here
return n
}
for i := range r.segments {
n += r.segments[i].Count()
}
return n
}
// MarshalJSON returns a JSON-encoded byte slice of r.
func (r *Row) MarshalJSON() ([]byte, error) {
var o struct {
Columns []uint64 `json:"columns"`
Keys []string `json:"keys,omitempty"`
}
o.Columns = r.Columns()
o.Keys = r.Keys
return json.Marshal(&o)
}
// Columns returns the columns in r as a slice of ints.
func (r *Row) Columns() []uint64 {
// We occasionally hit cases where we want to call Columns on something
// that might not exist, but a nil slice would be fine.
if r == nil {
return nil
}
a := make([]uint64, 0, r.Count())
for i := range r.segments {
a = append(a, r.segments[i].Columns()...)
}
return a
}
// Includes returns true if the row contains the given column.
func (r *Row) Includes(col uint64) bool {
shard := col / ShardWidth
for i := range r.segments {
if r.segments[i].shard == shard {
return r.segments[i].data.Contains(col)
}
}
return false
}
// rowSegment holds a subset of a row.
// This could point to a mmapped roaring bitmap or an in-memory bitmap. The
// width of the segment will always match the shard width.
type rowSegment struct {
// Shard this segment belongs to
shard uint64
// Underlying raw bitmap implementation.
// This is an mmapped bitmap if writable is false. Otherwise
// it is a heap allocated bitmap which can be manipulated.
data *roaring.Bitmap
writable bool
// Bit count
n uint64
}
func (s *rowSegment) Freeze() {
s.data = s.data.Freeze()
}
/*
// Raw returns the row segment as a byte slice.
// It may be used by the gRPC server to deliver results
// as a roaring bitmap instead of a stream of RowResults.
func (s *rowSegment) Raw() (uint64, []byte) {
var buf bytes.Buffer
s.data.WriteTo(&buf)
return s.shard, buf.Bytes()
}
*/
// Merge adds chunks from other to s.
// Chunks in s are overwritten if they exist in other.
func (s *rowSegment) Merge(other *rowSegment) {
s.ensureWritable()
itr := other.data.Iterator()
for v, eof := itr.Next(); !eof; v, eof = itr.Next() {
s.SetBit(v)
}
}
// IntersectionCount returns the number of intersections between s and other.
func (s *rowSegment) IntersectionCount(other *rowSegment) uint64 {
return s.data.IntersectionCount(other.data)
}
// Intersect returns the itersection of s and other.
func (s *rowSegment) Intersect(other *rowSegment) *rowSegment {
data := s.data.Intersect(other.data)
return &rowSegment{
data: data,
shard: s.shard,
n: data.Count(),
}
}
// Union returns the bitwise union of s and other.
func (s *rowSegment) Union(others ...*rowSegment) *rowSegment {
datas := make([]*roaring.Bitmap, len(others))
for i, other := range others {
datas[i] = other.data
}
data := s.data.Union(datas...)
return &rowSegment{
data: data,
shard: s.shard,
n: data.Count(),
}
}
// Difference returns the diff of s and other.
func (s *rowSegment) Difference(others ...*rowSegment) *rowSegment {
datas := make([]*roaring.Bitmap, len(others))
for i, other := range others {
datas[i] = other.data
}
data := s.data.Difference(datas...)
return &rowSegment{
data: data,
shard: s.shard,
n: data.Count(),
}
}
// Xor returns the xor of s and other.
func (s *rowSegment) Xor(other *rowSegment) *rowSegment {
data := s.data.Xor(other.data)
return &rowSegment{
data: data,
shard: s.shard,
n: data.Count(),
}
}
// Shift returns s shifted by 1 bit.
func (s *rowSegment) Shift() (*rowSegment, error) {
// TODO: deal with overflow
// See issue: https://github.com/molecula/pilosa/issues/403
data, err := s.data.Shift(1)
if err != nil {
return nil, errors.Wrap(err, "shifting roaring data")
}
return &rowSegment{
data: data,
shard: s.shard,
n: data.Count(),
}, nil
}
// SetBit sets the i-th column of the row.
func (s *rowSegment) SetBit(i uint64) (changed bool) {
s.ensureWritable()
changed, _ = s.data.Add(i)
if changed {
s.n++
}
return changed
}
// ClearBit clears the i-th column of the row.
func (s *rowSegment) ClearBit(i uint64) (changed bool) {
s.ensureWritable()
changed, _ = s.data.Remove(i)
if changed {
s.n--
}
return changed
}
// InvalidateCount updates the cached count in the row.
func (s *rowSegment) InvalidateCount() {
s.n = s.data.Count()
}
// Columns returns a list of all columns set in the segment.
func (s *rowSegment) Columns() []uint64 {
a := make([]uint64, 0, s.Count())
itr := s.data.Iterator()
for v, eof := itr.Next(); !eof; v, eof = itr.Next() {
a = append(a, v)
}
return a
}
// Count returns the number of set columns in the row.
func (s *rowSegment) Count() uint64 { return s.n }
// ensureWritable clones the segment if it is pointing to non-writable data.
func (s *rowSegment) ensureWritable() {
if s.writable {
return
}
// This doesn't actually clone all the containers, but does clone
// the bitmap itself -- we get a new bitmap, but it just marks the
// containers as frozen and shares them. It's now safe to write to
// this bitmap, but the actual containers are copy-on-write.
s.data = s.data.Freeze()
s.writable = true
}
// mergeSegmentIterator produces an iterator that loops through two sets of segments.
type mergeSegmentIterator struct {
a0, a1 []rowSegment
}
// newMergeSegmentIterator returns a new instance of mergeSegmentIterator.
func newMergeSegmentIterator(a0, a1 []rowSegment) mergeSegmentIterator {
return mergeSegmentIterator{a0: a0, a1: a1}
}
// next returns the next set of segments.
func (itr *mergeSegmentIterator) next() (s0, s1 *rowSegment) {
// Find current segments.
if len(itr.a0) > 0 {
s0 = &itr.a0[0]
}
if len(itr.a1) > 0 {
s1 = &itr.a1[0]
}
// Return if either or both are nil.
if s0 == nil && s1 == nil {
return
} else if s0 == nil {
itr.a1 = itr.a1[1:]
return
} else if s1 == nil {
itr.a0 = itr.a0[1:]
return
}
// Otherwise determine which is first.
if s0.shard < s1.shard {
itr.a0 = itr.a0[1:]
return s0, nil
} else if s0.shard > s1.shard {
itr.a1 = itr.a1[1:]
return s1, nil
}
// Return both if shards are equal.
itr.a0, itr.a1 = itr.a0[1:], itr.a1[1:]
return s0, s1
}