-
-
Couldn't load subscription status.
- Fork 16
Open
Description
Motivation and description
I want to use an ODESolver in a PyTorch ML stack.
It's pretty easy to write a Julia function that takes in initial conditions of a differential equation, uses the DifferentialEquations.jl to solve that differential equation, and returns the results of that equation. That Julia function will be automatically differential, and I'd like to be able to convert it into a PyTorch-compatible object (with gradient information preserved).
Possible Implementation
###################
#### Package ######
###################
from juliacall import Main as jl
import numpy as np
import torch
from torch.autograd import Function, gradcheck
loss = jl.seval("loss(f, grad) = x -> (sum(pyconvert(Array, f(x)) .* grad))")
try:
gradient = jl.seval("using ForwardDiff: gradient; gradient")
except:
jl.seval("import Pkg; Pkg.add(\"ForwardDiff\")")
gradient = jl.seval("using ForwardDiff: gradient; gradient")
class CallJuliaFunction(Function):
@staticmethod
def forward(ctx, f, x):
ctx.f = f
ctx.save_for_backward(x)
np_x = x.detach().numpy()
jl_res = f(np_x)
np_res = np.array(jl_res)
torch_res = torch.from_numpy(np_res)
return torch_res
@staticmethod
def backward(ctx, grad_output):
f = ctx.f
x, = ctx.saved_tensors
np_x = x.detach().numpy()
np_grad_output = grad_output.detach().numpy()
ls = loss(f, np_grad_output)
jl_grad = gradient(ls, np_x)
np_grad = np.array(jl_grad)
torch_grad = torch.from_numpy(np_grad)
return None, torch_grad
###################
##### Tests #######
###################
x = torch.randn(3,3,dtype=torch.double,requires_grad=True)
f = jl.seval("f(x) = 2 .* x")
f2 = lambda x: f(x) # hack to work around https://github.com/JuliaPy/PythonCall.jl/issues/390
# Use it by calling the apply method:
print(x)
output = CallJuliaFunction.apply(f, x)
print(output)
output = CallJuliaFunction.apply(f2, x)
print(output)
# gradcheck takes a tuple of tensors as input, check if your gradient
# evaluated with these tensors are close enough to numerical
# approximations and returns True if they all verify this condition.
input = (f2, torch.randn(3,3,dtype=torch.double,requires_grad=True),)
test = gradcheck(CallJuliaFunction.apply, input, eps=1e-6, atol=1e-4)
print(test)ToucheSir
Metadata
Metadata
Assignees
Labels
No labels