33# This list is human-curated. Citation counts are added separately.
44
55papers :
6+
67 # ===== Foundations =====
78 - id : ddpm_2020
89 title : " Denoising Diffusion Probabilistic Models"
@@ -16,6 +17,12 @@ papers:
1617 scholar_url : " https://scholar.google.com/scholar?cluster=622631041436591387&hl=en&as_sdt=2005&sciodt=0,5"
1718 scholar_query : " \" Denoising Diffusion Probabilistic Models\" Ho Jain Abbeel"
1819 tags : ["foundations", "image"]
20+ impact_type : foundational
21+ why_it_matters : >
22+ Introduced diffusion probabilistic models as a practical generative modeling framework,
23+ showing that iterative denoising from Gaussian noise can achieve competitive image synthesis.
24+ Established the core training objective and sampling procedure that form the basis of most
25+ subsequent diffusion models.
1926
2027 - id : ddim_2020
2128 title : " Denoising Diffusion Implicit Models"
@@ -29,6 +36,15 @@ papers:
2936 scholar_url : " https://scholar.google.com/scholar?cluster=15692403916484267912&hl=en&as_sdt=2005&sciodt=0,5"
3037 scholar_query : " \" Denoising Diffusion Implicit Models\" "
3138 tags : ["foundations", "sampling"]
39+ impact_type : enabling
40+ relations :
41+ - type : improves
42+ target : ddpm_2020
43+ why_it_matters : >
44+ Demonstrated that diffusion models can be sampled using a non-Markovian process that
45+ preserves sample quality while requiring far fewer steps. This significantly improved
46+ inference efficiency without retraining and made diffusion models more practical in real
47+ applications.
3248
3349 - id : score_sde_2021
3450 title : " Score-Based Generative Modeling through Stochastic Differential Equations"
@@ -42,6 +58,17 @@ papers:
4258 scholar_url : " https://scholar.google.com/scholar?cluster=14592788616550656262&hl=en&as_sdt=2005&sciodt=0,5"
4359 scholar_query : " \" Score-Based Generative Modeling through Stochastic Differential Equations\" "
4460 tags : ["foundations", "theory"]
61+ impact_type : foundational
62+ relations :
63+ - type : unifies
64+ target : score_matching_2019
65+ - type : extends
66+ target : ddpm_2020
67+ why_it_matters : >
68+ Unified score-based generative models and diffusion processes under a continuous-time
69+ stochastic differential equation framework. Provided theoretical clarity and enabled new
70+ sampling methods, connecting discrete diffusion models with broader probabilistic modeling
71+ theory.
4572
4673 - id : score_matching_2019
4774 title : " Generative Modeling by Estimating Gradients of the Data Distribution"
@@ -55,6 +82,14 @@ papers:
5582 scholar_url : " https://scholar.google.com/scholar?cluster=7819543055117584506&hl=en&as_sdt=2005&sciodt=0,5"
5683 scholar_query : " \" Generative Modeling by Estimating Gradients of the Data Distribution\" "
5784 tags : ["foundations", "score"]
85+ impact_type : foundational
86+ relations :
87+ - type : precedes
88+ target : ddpm_2020
89+ why_it_matters : >
90+ Introduced score matching as a scalable approach for generative modeling, enabling models
91+ to learn gradients of the data distribution directly. This work laid the conceptual and
92+ mathematical groundwork for later score-based diffusion models.
5893
5994 # ===== Training & Objectives =====
6095 - id : improved_ddpm_2021
@@ -66,9 +101,17 @@ papers:
66101 arxiv : " https://arxiv.org/abs/2102.09672"
67102 pdf : " https://arxiv.org/pdf/2102.09672.pdf"
68103 scholar :
69- scholar_url : " https://scholar.google.com/scholar?cluster=2227179395488568184 &hl=en&as_sdt=2005&sciodt=0,5"
104+ scholar_url : " https://scholar.google.com/scholar?cluster=1314010070205781055 &hl=en&as_sdt=2005&sciodt=0,5"
70105 scholar_query : " \" Improved Denoising Diffusion Probabilistic Models\" "
71106 tags : ["training", "image"]
107+ impact_type : refinement
108+ relations :
109+ - type : improves
110+ target : ddpm_2020
111+ why_it_matters : >
112+ Improved diffusion training and sampling through better noise schedules,
113+ parameterization, and loss weighting. These refinements significantly increased
114+ sample quality and stability and became standard practice in later diffusion models.
72115
73116 # ===== Guidance & Conditioning =====
74117 - id : classifier_guidance_2021
@@ -83,6 +126,12 @@ papers:
83126 scholar_url : " https://scholar.google.com/scholar?cluster=17982230494456470673&hl=en&as_sdt=2005&sciodt=0,5"
84127 scholar_query : " \" Diffusion Models Beat GANs on Image Synthesis\" "
85128 tags : ["guidance", "image"]
129+ impact_type : enabling
130+ why_it_matters : >
131+ Demonstrated state-of-the-art class-conditional image synthesis with diffusion models and
132+ introduced classifier guidance as a practical way to trade off sample fidelity and diversity.
133+ This helped establish diffusion as a competitive (and later dominant) paradigm over GANs
134+ for high-fidelity image generation.
86135
87136 - id : classifier_free_guidance_2022
88137 title : " Classifier-Free Diffusion Guidance"
@@ -96,6 +145,12 @@ papers:
96145 scholar_url : " https://scholar.google.com/scholar?cluster=9321084442049185729&hl=en&as_sdt=2005&sciodt=0,5"
97146 scholar_query : " \" Classifier-Free Diffusion Guidance\" "
98147 tags : ["guidance", "conditioning"]
148+ impact_type : enabling
149+ why_it_matters : >
150+ Proposed classifier-free guidance, enabling strong conditional generation without training a
151+ separate classifier by mixing conditional and unconditional predictions during sampling.
152+ This became a default technique in text-to-image systems for boosting prompt adherence with
153+ a single model.
99154
100155 # ===== Latent & Scaling =====
101156 - id : latent_diffusion_2022
@@ -110,6 +165,12 @@ papers:
110165 scholar_url : " https://scholar.google.com/scholar?cluster=2427242760668866618&hl=en&as_sdt=2005&sciodt=0,5"
111166 scholar_query : " \" High-Resolution Image Synthesis with Latent Diffusion Models\" "
112167 tags : ["latent", "image", "systems"]
168+ impact_type : enabling
169+ why_it_matters : >
170+ Moved diffusion to a learned latent space to dramatically reduce computation and memory while
171+ retaining high perceptual quality, enabling practical high-resolution generation on commodity
172+ hardware. This design underpins many widely-used text-to-image pipelines and made large-scale
173+ diffusion deployment far more feasible.
113174
114175 # ===== Text-to-Image =====
115176 - id : glide_2021
@@ -124,6 +185,12 @@ papers:
124185 scholar_url : " https://scholar.google.com/scholar?cluster=15472303808406531445&hl=en&as_sdt=2005&sciodt=0,5"
125186 scholar_query : " \" GLIDE\" text-guided diffusion models"
126187 tags : ["text-to-image", "editing"]
188+ impact_type : enabling
189+ why_it_matters : >
190+ Showed that diffusion models can be effectively conditioned on text for both generation and
191+ image editing, establishing core recipes for text-guided diffusion before the big wave of
192+ production text-to-image systems. Helped crystallize “prompted diffusion” as a general-purpose
193+ controllable generation approach.
127194
128195 - id : imagen_2022
129196 title : " Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding"
@@ -137,6 +204,11 @@ papers:
137204 scholar_url : " https://scholar.google.com/scholar?cluster=2130901831690841916&hl=en&as_sdt=2005&sciodt=0,5"
138205 scholar_query : " \" Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding\" "
139206 tags : ["text-to-image", "scaling"]
207+ impact_type : enabling
208+ why_it_matters : >
209+ Demonstrated that strong text encoders and large-scale training substantially improve text
210+ alignment and photorealism in diffusion-based text-to-image generation. Popularized the idea
211+ that “language understanding” (not just image modeling) is a key lever for text-to-image quality.
140212
141213 # ===== Acceleration =====
142214 - id : progressive_distillation_2022
@@ -151,3 +223,8 @@ papers:
151223 scholar_url : " https://scholar.google.com/scholar?cluster=5194434213555432016&hl=en&as_sdt=2005&sciodt=0,5"
152224 scholar_query : " \" Progressive Distillation for Fast Sampling of Diffusion Models\" "
153225 tags : ["acceleration", "distillation"]
226+ impact_type : enabling
227+ why_it_matters : >
228+ Introduced a practical distillation approach that progressively reduces the number of sampling
229+ steps while maintaining quality, making diffusion inference significantly faster. This work is
230+ a cornerstone for later “few-step” diffusion approaches and production-oriented acceleration.
0 commit comments