Skip to content

Extracting features of varying dimensionality from the Inception-V3 model #58

@sivaramakrishnan-rajaraman

Description

Thanks for this excellent repository. Comparing with https://github.com/mseitzer/pytorch-fid, I would like to extract features from different pooling layers like the first max pooling features (64), second max pooling features (192), pre-aux classifier features (768), and final average pooling features (2048) and compare FID scores. I believe the default option in your case is extracting the features from the final average pooling layer. Correct me if I am wrong.

from cleanfid import fid
fdir1 = '/content/gdrive/MyDrive/syn'
fdir2 = '/content/gdrive/MyDrive/orig'
score = fid.compute_fid(fdir1, fdir2)
print(score)

Is there an option to modify the function call to extract features from different layers and compare the scores? Thanks in advance.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions