|
1 | 1 | Stream Likelihoods with ML
|
2 | 2 | ##########################
|
3 | 3 |
|
4 |
| -Stuff |
| 4 | +This is the PyTorch implementation of the StreamMapper code, which can be used to model stellar streams. |
| 5 | +StreamMapper-PyTorch is a PyTorch framework for building Bayesian Mixture Density Networks, which can |
| 6 | +then be trained using the standard PyTorch tooling. |
| 7 | +Detailed explanations can be found in our paper (https://ui.adsabs.harvard.edu/abs/2023arXiv231116960S/abstract) |
| 8 | +and especially in the code repository for the paper (https://github.com/nstarman/stellar_stream_density_ml_paper). |
| 9 | + |
| 10 | +As an illustruative example: |
| 11 | + |
| 12 | +.. code-block:: python |
| 13 | +
|
| 14 | + bkg_phi2_model = sml.builtin.Uniform( |
| 15 | + data_scaler=scaler, |
| 16 | + indep_coord_names=("phi1",), |
| 17 | + coord_names=("phi2",), |
| 18 | + coord_bounds={"phi2": (lower, upper)}, |
| 19 | + params=ModelParameters(), |
| 20 | + ) |
| 21 | +
|
| 22 | + bkg_plx_model = sml.builtin.Exponential( |
| 23 | + net=sml.nn.sequential( |
| 24 | + data=1, hidden_features=32, layers=3, features=1, dropout=0.15 |
| 25 | + ), |
| 26 | + data_scaler=scaler, |
| 27 | + indep_coord_names=("phi1",), |
| 28 | + coord_names=("parallax",), |
| 29 | + coord_bounds={"parallax": (lower, upper)}, |
| 30 | + params=ModelParameters( |
| 31 | + {"parallax": {"slope": ModelParameter(bounds=SigmoidBounds(15.0, 25.0))}} |
| 32 | + ), |
| 33 | + ) |
| 34 | +
|
| 35 | +
|
| 36 | + bkg_flow = sml.builtin.compat.ZukoFlowModel( |
| 37 | + net=zuko.flows.MAF(features=2, context=1, transforms=4, hidden_features=[4] * 4), |
| 38 | + jacobian_logdet=-xp.log(xp.prod(...)), |
| 39 | + data_scaler=scaler[("phi1", "g", "r")], |
| 40 | + coord_names=phot_names, |
| 41 | + coord_bounds=phot_bounds, |
| 42 | + params=ModelParameters(), |
| 43 | + ) |
| 44 | +
|
| 45 | + background_model = sml.IndependentModels( |
| 46 | + { |
| 47 | + "astrometric": sml.IndependentModels( |
| 48 | + {"phi2": bkg_phi2_model, "parallax": bkg_plx_model} |
| 49 | + ), |
| 50 | + "photometric": bkg_flow, |
| 51 | + } |
| 52 | + ) |
| 53 | +
|
| 54 | +
|
| 55 | + stream_astrometric_model = sml.builtin.Normal( |
| 56 | + net=..., # PyTorch NN |
| 57 | + data_scaler=scaler, |
| 58 | + coord_names=coord_astrometric_names, |
| 59 | + coord_bounds=coord_astrometric_bounds, |
| 60 | + params=ModelParameters( |
| 61 | + { |
| 62 | + "phi2": { |
| 63 | + "mu": ModelParameter(bounds=..., scaler=...), |
| 64 | + "ln-sigma": ModelParameter(bounds=..., scaler=...), |
| 65 | + }, |
| 66 | + "parallax": { |
| 67 | + "mu": ModelParameter(bounds=..., scaler=...), |
| 68 | + "ln-sigma": ModelParameter(bounds=..., scaler=...), |
| 69 | + }, |
| 70 | + } |
| 71 | + ), |
| 72 | + ) |
| 73 | +
|
| 74 | + stream_isochrone_model = sml.builtin.IsochroneMVNorm(...) |
| 75 | +
|
| 76 | + stream_model = sml.IndependentModels( |
| 77 | + {"astrometric": stream_astrometric_model, "photometric": stream_isochrone_model}, |
| 78 | + unpack_params_hooks=( |
| 79 | + Parallax2DistMod( |
| 80 | + astrometric_coord="astrometric.parallax", |
| 81 | + photometric_coord="photometric.distmod", |
| 82 | + ), |
| 83 | + ), |
| 84 | + ) |
| 85 | +
|
| 86 | + model = sml.MixtureModel( |
| 87 | + {"stream": stream_model, "background": background_model}, |
| 88 | + net=..., |
| 89 | + data_scaler=scaler, |
| 90 | + params=ModelParameters( |
| 91 | + { |
| 92 | + f"stream.ln-weight": ModelParameter(...), |
| 93 | + f"background.ln-weight": ModelParameter(...), |
| 94 | + } |
| 95 | + ), |
| 96 | + ) |
0 commit comments