|
| 1 | +import unittest |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import pandas as pd |
| 5 | +import xarray as xr |
| 6 | + |
| 7 | +from bluemath_tk.tcs.vortex import vortex_model_grid |
| 8 | + |
| 9 | + |
| 10 | +class TestVortexModelGrid(unittest.TestCase): |
| 11 | + """Test the vortex_model_grid function.""" |
| 12 | + |
| 13 | + def test_vortex_model_grid(self): |
| 14 | + storm_track = pd.DataFrame( |
| 15 | + { |
| 16 | + "vfx": [10, 12], |
| 17 | + "vfy": [5, 6], |
| 18 | + "p0": [1000, 990], |
| 19 | + "pn": [980, 970], |
| 20 | + "vmax": [50, 55], |
| 21 | + "rmw": [30, 35], |
| 22 | + "lon": [10.001, 12.001], |
| 23 | + "lat": [20.001, 22.001], |
| 24 | + }, |
| 25 | + index=pd.date_range("2023-10-01", periods=2), |
| 26 | + ) |
| 27 | + cg_lon = np.array([9.5, 10.0, 10.5]) |
| 28 | + cg_lat = np.array([19.5, 20.0, 20.5]) |
| 29 | + |
| 30 | + ds = vortex_model_grid(storm_track, cg_lon, cg_lat, coords_mode="SPHERICAL") |
| 31 | + |
| 32 | + W_vals = np.array( |
| 33 | + [ |
| 34 | + [ |
| 35 | + [17.09417413, 0.82665737], |
| 36 | + [22.66057334, 1.14495022], |
| 37 | + [19.54808437, 1.54414607], |
| 38 | + ], |
| 39 | + [[15.94360075, 1.1403561], [0.0, 1.68962993], [20.625051, 2.44988633]], |
| 40 | + [ |
| 41 | + [10.76028132, 1.52098785], |
| 42 | + [12.98617365, 2.42132863], |
| 43 | + [14.33530855, 3.80841364], |
| 44 | + ], |
| 45 | + ] |
| 46 | + ) |
| 47 | + Dir_vals = np.array( |
| 48 | + [ |
| 49 | + [ |
| 50 | + [1.29496987e02, 1.29942357e02], |
| 51 | + [9.01036600e01, 1.19620263e02], |
| 52 | + [5.08422102e01, 1.11400370e02], |
| 53 | + ], |
| 54 | + [ |
| 55 | + [1.79763735e02, 1.41716653e02], |
| 56 | + [1.34656325e02, 1.30581118e02], |
| 57 | + [2.39753156e-01, 1.19617666e02], |
| 58 | + ], |
| 59 | + [ |
| 60 | + [2.30162978e02, 1.52609284e02], |
| 61 | + [2.69894691e02, 1.43594058e02], |
| 62 | + [3.09495882e02, 1.32127127e02], |
| 63 | + ], |
| 64 | + ] |
| 65 | + ) |
| 66 | + p_vals = np.array( |
| 67 | + [ |
| 68 | + [ |
| 69 | + [98722.50246466, 97023.7119469], |
| 70 | + [99257.26417213, 97029.78898728], |
| 71 | + [98725.18999552, 97036.80829455], |
| 72 | + ], |
| 73 | + [ |
| 74 | + [99371.28980686, 97030.96909655], |
| 75 | + [100000.0, 97041.30637199], |
| 76 | + [99378.55955678, 97054.71911504], |
| 77 | + ], |
| 78 | + [ |
| 79 | + [98727.68758907, 97040.02996857], |
| 80 | + [99264.62166108, 97057.51709726], |
| 81 | + [98730.39083852, 97083.99580787], |
| 82 | + ], |
| 83 | + ] |
| 84 | + ) |
| 85 | + lat = np.array([19.5, 20.0, 20.5]) |
| 86 | + lon = np.array([9.5, 10.0, 10.5]) |
| 87 | + time = np.array( |
| 88 | + ["2023-10-01T00:00:00.000000000", "2023-10-02T00:00:00.000000000"], |
| 89 | + dtype="datetime64[ns]", |
| 90 | + ) |
| 91 | + |
| 92 | + ds_expected = xr.Dataset( |
| 93 | + { |
| 94 | + "W": (["lat", "lon", "time"], W_vals, {"units": "m/s"}), |
| 95 | + "Dir": (["lat", "lon", "time"], Dir_vals, {"units": "º"}), |
| 96 | + "p": (["lat", "lon", "time"], p_vals, {"units": "Pa"}), |
| 97 | + }, |
| 98 | + coords={"lat": lat, "lon": lon, "time": time}, |
| 99 | + ) |
| 100 | + |
| 101 | + xr.testing.assert_allclose(ds, ds_expected, rtol=1e-5, atol=1e-5) |
| 102 | + |
| 103 | + |
| 104 | +if __name__ == "__main__": |
| 105 | + unittest.main() |
0 commit comments