@@ -324,6 +324,7 @@ def fit_predict(
324324 directional_variables : List [str ] = [],
325325 custom_scale_factor : dict = {},
326326 min_number_of_points : int = None ,
327+ max_number_of_iterations : int = 10 ,
327328 normalize_data : bool = True ,
328329 ) -> Tuple [pd .DataFrame , pd .DataFrame ]:
329330 """
@@ -343,6 +344,10 @@ def fit_predict(
343344 min_number_of_points : int, optional
344345 The minimum number of points to consider a cluster.
345346 Default is None.
347+ max_number_of_iterations : int, optional
348+ The maximum number of iterations for the K-Means algorithm.
349+ This is used when min_number_of_points is not None.
350+ Default is 10.
346351 normalize_data : bool, optional
347352 A flag to normalize the data. Default is True.
348353
@@ -358,6 +363,7 @@ def fit_predict(
358363 directional_variables = directional_variables ,
359364 custom_scale_factor = custom_scale_factor ,
360365 min_number_of_points = min_number_of_points ,
366+ max_number_of_iterations = max_number_of_iterations ,
361367 normalize_data = normalize_data ,
362368 )
363369
0 commit comments