-
Notifications
You must be signed in to change notification settings - Fork 101
Description
Hello,
I'm having a problem compiling and installing anuga version 3.2.0.dev. I tried installing and compiling in both windows environment and linux environment, both show success without any error report or warning. But there is a problem when I actually use the CUDA method.
from anuga.shallow_water.sw_domain_cuda import nvtxRangePush, nvtxRangePop
ModuleNotFoundError Traceback (most recent call last)
Cell In[3], line 5
1 import anuga
2 import anuga.shallow_water
----> 5 from anuga.shallow_water.sw_domain_cuda import nvtxRangePush, nvtxRangePop
ModuleNotFoundError: No module named 'anuga.shallow_water.sw_domain_cuda'
dir(anuga.shallow_water)
['builtins',
'cached',
'doc',
'file',
'loader',
'name',
'package',
'path',
'spec',
'boundaries',
'checkpoint',
'forcing',
'shallow_water_domain',
'sw_domain_orig_ext',
'sww_interrogate',
'test']
Show compilation success
(anuga_env_3.11)H:\anuga_core>pip install --no-build-isolation -eObtaining file:///H:/anuga_coreChecking if build backend supports build_editable ... donePreparing editable metadata(pyproject.toml)... doneRequirement already satisfied: numpy>=1.24.0 in c:(usersllenovol.condalenvs(anuga_env_3.11\lib\site-packages (from anuga=3.2.0.dev0)(2.2.6)Building wheels for collectedpackages:anugaBuilding editable for anuga(pyproject.toml)... doneCreated wheel for anuga: filenameanuga-3.2.0.dev0-cp311-cp311-win_amd64.whl size=7822 sha256-2b56623eadaf2f0086e36336f095754dc6b05176ae12604501b8bf26d5cd2616Stored in directory: c: Users Lenovo\AppDatalLocallTemplpip-ephem-wheel-cache-4xlp4xzf\wheels(a1 cf\61\79593d87a34e12fb61ab63d77f9791bc76c763bec5acc0fцfa
Successfully built anugaInstalling collected packages:anugaSuccessfully installed anuga-3.2.0.dev
Is it possible to provide a reference to a successful compilation environment, or I did not see a package like cudatoolkit in the environment requirements to run the cuda base, is this similar to the requirements for the GPU, do I need to pay extra attention to anything for running with cuda.