diff --git a/notebooks/community/model_garden/model_garden_xdit_cogvideox_2b.ipynb b/notebooks/community/model_garden/model_garden_xdit_cogvideox_2b.ipynb new file mode 100644 index 000000000..fffbab209 --- /dev/null +++ b/notebooks/community/model_garden/model_garden_xdit_cogvideox_2b.ipynb @@ -0,0 +1,378 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "id": "1gcBBbBCW_CV" + }, + "outputs": [], + "source": [ + "# Copyright 2025 Google LLC\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wKzYxAA1W_CV" + }, + "source": [ + "# Vertex AI Model Garden - CogVideoX-2b\n", + "\n", + "\n", + " \n", + " \n", + "
\n", + " \n", + " \"Google
Run in Colab Enterprise\n", + "
\n", + "
\n", + " \n", + " \"GitHub
View on GitHub\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2WwEeH8BW_CV" + }, + "source": [ + "## Overview\n", + "\n", + "This notebook demonstrates deploying the pre-trained [CogVideoX-2b](https://huggingface.co/THUDM/CogVideoX-2b) model on Vertex AI for online prediction.\n", + "\n", + "### Objective\n", + "\n", + "- Upload the model to [Model Registry](https://cloud.google.com/vertex-ai/docs/model-registry/introduction).\n", + "- Deploy the model on [Endpoint](https://cloud.google.com/vertex-ai/docs/predictions/using-private-endpoints).\n", + "- Run online predictions for text-to-video.\n", + "\n", + "### Costs\n", + "\n", + "This tutorial uses billable components of Google Cloud:\n", + "\n", + "* Vertex AI\n", + "* Cloud Storage\n", + "\n", + "Learn about [Vertex AI pricing](https://cloud.google.com/vertex-ai/pricing), [Cloud Storage pricing](https://cloud.google.com/storage/pricing), and use the [Pricing Calculator](https://cloud.google.com/products/calculator/) to generate a cost estimate based on your projected usage." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TAKAyLQvW_CV" + }, + "source": [ + "## Run the notebook" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "id": "sGzHHcL3W_CV" + }, + "outputs": [], + "source": [ + "# @title Setup Google Cloud project\n", + "\n", + "# @markdown 1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).\n", + "\n", + "# @markdown 2. **[Optional]** [Create a Cloud Storage bucket](https://cloud.google.com/storage/docs/creating-buckets) for storing experiment outputs. Set the BUCKET_URI for the experiment environment. The specified Cloud Storage bucket (`BUCKET_URI`) should be located in the same region as where the notebook was launched. Note that a multi-region bucket (eg. \"us\") is not considered a match for a single region covered by the multi-region range (eg. \"us-central1\"). If not set, a unique GCS bucket will be created instead.\n", + "\n", + "BUCKET_URI = \"gs://\" # @param {type:\"string\"}\n", + "\n", + "# @markdown 3. **[Optional]** Set region. If not set, the region will be set automatically according to Colab Enterprise environment.\n", + "\n", + "REGION = \"\" # @param {type:\"string\"}\n", + "\n", + "# @markdown 4. If you want to run predictions with A100 80GB or H100 GPUs, we recommend using the regions listed below. **NOTE:** Make sure you have associated quota in selected regions. Click the links to see your current quota for each GPU type: [Nvidia A100 80GB](https://console.cloud.google.com/iam-admin/quotas?metric=aiplatform.googleapis.com%2Fcustom_model_serving_nvidia_a100_80gb_gpus), [Nvidia H100 80GB](https://console.cloud.google.com/iam-admin/quotas?metric=aiplatform.googleapis.com%2Fcustom_model_serving_nvidia_h100_gpus).\n", + "\n", + "# @markdown > | Machine Type | Accelerator Type | Recommended Regions |\n", + "# @markdown | ----------- | ----------- | ----------- |\n", + "# @markdown | a2-ultragpu-1g | 1 NVIDIA_A100_80GB | us-central1, us-east4, europe-west4, asia-southeast1, us-east4 |\n", + "# @markdown | a3-highgpu-2g | 2 NVIDIA_H100_80GB | us-west1, asia-southeast1, europe-west4 |\n", + "# @markdown | a3-highgpu-4g | 4 NVIDIA_H100_80GB | us-west1, asia-southeast1, europe-west4 |\n", + "# @markdown | a3-highgpu-8g | 8 NVIDIA_H100_80GB | us-central1, us-east5, europe-west4, us-west1, asia-southeast1 |\n", + "\n", + "import datetime\n", + "import importlib\n", + "import os\n", + "import uuid\n", + "\n", + "from google.cloud import aiplatform\n", + "from IPython.display import HTML\n", + "\n", + "# Get the default cloud project id.\n", + "PROJECT_ID = os.environ[\"GOOGLE_CLOUD_PROJECT\"]\n", + "\n", + "# Get the default region for launching jobs.\n", + "if not REGION:\n", + " REGION = os.environ[\"GOOGLE_CLOUD_REGION\"]\n", + "\n", + "# Enable the Vertex AI API and Compute Engine API, if not already.\n", + "print(\"Enabling Vertex AI API and Compute Engine API.\")\n", + "! gcloud services enable aiplatform.googleapis.com compute.googleapis.com\n", + "\n", + "# Cloud Storage bucket for storing the experiment artifacts.\n", + "# A unique GCS bucket will be created for the purpose of this notebook. If you\n", + "# prefer using your own GCS bucket, change the value yourself below.\n", + "now = datetime.datetime.now().strftime(\"%Y%m%d%H%M%S\")\n", + "BUCKET_NAME = \"/\".join(BUCKET_URI.split(\"/\")[:3])\n", + "\n", + "if BUCKET_URI is None or BUCKET_URI.strip() == \"\" or BUCKET_URI == \"gs://\":\n", + " BUCKET_URI = f\"gs://{PROJECT_ID}-tmp-{now}-{str(uuid.uuid4())[:4]}\"\n", + " BUCKET_NAME = \"/\".join(BUCKET_URI.split(\"/\")[:3])\n", + " ! gsutil mb -l {REGION} {BUCKET_URI}\n", + "else:\n", + " assert BUCKET_URI.startswith(\"gs://\"), \"BUCKET_URI must start with `gs://`.\"\n", + " shell_output = ! gsutil ls -Lb {BUCKET_NAME} | grep \"Location constraint:\" | sed \"s/Location constraint://\"\n", + " bucket_region = shell_output[0].strip().lower()\n", + " if bucket_region != REGION:\n", + " raise ValueError(\n", + " \"Bucket region %s is different from notebook region %s\"\n", + " % (bucket_region, REGION)\n", + " )\n", + "print(f\"Using this GCS Bucket: {BUCKET_URI}\")\n", + "\n", + "STAGING_BUCKET = os.path.join(BUCKET_URI, \"temporal\")\n", + "MODEL_BUCKET = os.path.join(BUCKET_URI, \"cogvideox-2b\")\n", + "\n", + "\n", + "# Initialize Vertex AI API.\n", + "print(\"Initializing Vertex AI API.\")\n", + "aiplatform.init(project=PROJECT_ID, location=REGION, staging_bucket=STAGING_BUCKET)\n", + "\n", + "# Gets the default SERVICE_ACCOUNT.\n", + "shell_output = ! gcloud projects describe $PROJECT_ID\n", + "project_number = shell_output[-1].split(\":\")[1].strip().replace(\"'\", \"\")\n", + "SERVICE_ACCOUNT = f\"{project_number}-compute@developer.gserviceaccount.com\"\n", + "print(\"Using this default Service Account:\", SERVICE_ACCOUNT)\n", + "\n", + "\n", + "# Provision permissions to the SERVICE_ACCOUNT with the GCS bucket\n", + "! gsutil iam ch serviceAccount:{SERVICE_ACCOUNT}:roles/storage.admin $BUCKET_NAME\n", + "\n", + "! gcloud config set project $PROJECT_ID\n", + "! gcloud projects add-iam-policy-binding --no-user-output-enabled {PROJECT_ID} --member=serviceAccount:{SERVICE_ACCOUNT} --role=\"roles/storage.admin\"\n", + "! gcloud projects add-iam-policy-binding --no-user-output-enabled {PROJECT_ID} --member=serviceAccount:{SERVICE_ACCOUNT} --role=\"roles/aiplatform.user\"\n", + "\n", + "models, endpoints = {}, {}\n", + "\n", + "! git clone https://github.com/GoogleCloudPlatform/vertex-ai-samples.git\n", + "\n", + "common_util = importlib.import_module(\n", + " \"vertex-ai-samples.community-content.vertex_model_garden.model_oss.notebook_util.common_util\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "id": "q36QziORW_CV" + }, + "outputs": [], + "source": [ + "# @title Deploy the model to Vertex for online predictions\n", + "\n", + "# @markdown This section uploads the [THUDM/CogVideoX-2b](https://huggingface.co/THUDM/CogVideoX-2b) model to Model Registry and deploys it on the Endpoint with the specified accelerator.\n", + "\n", + "# @markdown The deployment takes ~15-30 minutes to finish.\n", + "\n", + "model_id = \"THUDM/CogVideoX-2b\"\n", + "task = \"text-to-video\"\n", + "\n", + "accelerator_type = \"NVIDIA_A100_80GB\" # @param [\"NVIDIA_A100_80GB\", \"NVIDIA_H100_80GB\", \"2 NVIDIA_H100_80GB\", \"2 NVIDIA_L4\"]\n", + "\n", + "machine_type_map = {\n", + " \"NVIDIA_A100_80GB\": \"a2-ultragpu-1g\",\n", + " \"NVIDIA_H100_80GB\": \"a3-highgpu-1g\",\n", + " \"2 NVIDIA_H100_80GB\": \"a3-highgpu-2g\",\n", + " \"2 NVIDIA_L4\": \"g2-standard-24\"\n", + "}\n", + "\n", + "machine_type = machine_type_map.get(accelerator_type)\n", + "accelerator_count = 1\n", + "\n", + "if machine_type is \"a3-highgpu-2g\":\n", + " accelerator_type = \"NVIDIA_H100_80GB\"\n", + " accelerator_count = 2\n", + "elif machine_type is \"g2-standard-24\":\n", + " accelerator_type = \"NVIDIA_L4\"\n", + " accelerator_count = 2\n", + "\n", + "\n", + "# The pre-built serving docker image. It contains serving scripts and models.\n", + "SERVE_DOCKER_URI = \"us-docker.pkg.dev/deeplearning-platform-release/vertex-model-garden/xdit-serve.cu125.0-1.ubuntu2204.py310\"\n", + "\n", + "\n", + "def deploy_model(model_id, task, machine_type, accelerator_type, accelerator_count):\n", + " \"\"\"Create a Vertex AI Endpoint and deploy the specified model to the endpoint.\"\"\"\n", + " common_util.check_quota(\n", + " project_id=PROJECT_ID,\n", + " region=REGION,\n", + " accelerator_type=accelerator_type,\n", + " accelerator_count=accelerator_count,\n", + " is_for_training=False,\n", + " )\n", + "\n", + " model_name = model_id\n", + "\n", + " endpoint = aiplatform.Endpoint.create(display_name=f\"{model_name}-endpoint\")\n", + " serving_env = {\n", + " \"MODEL_ID\": model_id,\n", + " \"TASK\": task,\n", + " \"DEPLOY_SOURCE\": \"notebook\",\n", + " }\n", + "\n", + " # xDiT serving parameters\n", + " serving_env[\"N_GPUS\"] = accelerator_count\n", + " serving_env[\"ENABLE_SLICING\"] = \"true\"\n", + " serving_env[\"ENABLE_TILING\"] = \"true\"\n", + " if accelerator_count == 2:\n", + " serving_env[\"USE_CFG_PARALLEL\"] = \"true\"\n", + "\n", + " model = aiplatform.Model.upload(\n", + " display_name=model_name,\n", + " serving_container_image_uri=SERVE_DOCKER_URI,\n", + " serving_container_ports=[7080],\n", + " serving_container_predict_route=\"/predict\",\n", + " serving_container_health_route=\"/health\",\n", + " serving_container_environment_variables=serving_env,\n", + " model_garden_source_model_name=\"publishers/thudm/models/cogvideox-2b\"\n", + " )\n", + "\n", + " model.deploy(\n", + " endpoint=endpoint,\n", + " machine_type=machine_type,\n", + " accelerator_type=accelerator_type,\n", + " accelerator_count=accelerator_count,\n", + " deploy_request_timeout=1800,\n", + " service_account=SERVICE_ACCOUNT,\n", + " system_labels={\n", + " \"NOTEBOOK_NAME\": \"model_garden_xdit_cogvideox_2b.ipynb\"\n", + " )\n", + " return model, endpoint\n", + "\n", + "\n", + "models[\"model\"], endpoints[\"endpoint\"] = deploy_model(\n", + " model_id=model_id,\n", + " task=task,\n", + " machine_type=machine_type,\n", + " accelerator_type=accelerator_type,\n", + " accelerator_count=accelerator_count,\n", + ")\n", + "\n", + "print(\"endpoint_name:\", endpoints[\"endpoint\"].name)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "id": "TKJsEJoeW_CV" + }, + "outputs": [], + "source": [ + "# @title Predict\n", + "\n", + "# @markdown Once deployment succeeds, you can send requests to the endpoint with text prompts.\n", + "\n", + "# @markdown The inference takes ~70s with 1 A100 GPU.\n", + "\n", + "# @markdown The inference takes ~40s with 1 H100 GPU.\n", + "\n", + "# @markdown The inference takes ~18s with 2 H100 GPU\n", + "\n", + "# @markdown The inference takes ~110s with 2 L4 GPU.\n", + "\n", + "# @markdown Example:\n", + "\n", + "# @markdown ```\n", + "# @markdown text: A cat waving a sign that says hello world\n", + "# @markdown ```\n", + "\n", + "# @markdown You may adjust the parameters below to achieve best video quality.\n", + "\n", + "text = \"A cat waving a sign that says hello world\" # @param {type: \"string\"}\n", + "num_inference_steps = 50 # @param {type:\"number\"}\n", + "\n", + "instances = [{\"text\": text}]\n", + "parameters = {\n", + " \"num_inference_steps\": num_inference_steps,\n", + "}\n", + "\n", + "\n", + "response = endpoints[\"endpoint\"].predict(instances=instances, parameters=parameters)\n", + "\n", + "video_bytes = response.predictions[0][\"output\"]\n", + "\n", + "video_html = f\"\"\"\n", + "\n", + "\"\"\" # Assumes MP4. Change type if needed (e.g., video/webm)\n", + "\n", + "display(HTML(video_html))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "id": "42leJGJFW_CV" + }, + "outputs": [], + "source": [ + "# @title Clean up resources\n", + "# @markdown Delete the experiment models and endpoints to recycle the resources\n", + "# @markdown and avoid unnecessary continuous charges that may incur.\n", + "\n", + "# Undeploy model and delete endpoint.\n", + "for endpoint in endpoints.values():\n", + " endpoint.delete(force=True)\n", + "\n", + "# Delete models.\n", + "for model in models.values():\n", + " model.delete()\n", + "\n", + "delete_bucket = False # @param {type:\"boolean\"}\n", + "if delete_bucket:\n", + " ! gsutil -m rm -r $BUCKET_NAME" + ] + } + ], + "metadata": { + "colab": { + "name": "model_garden_xdit_cogvideox_2b.ipynb", + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}