-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path001-report.bib
503 lines (477 loc) · 16.5 KB
/
001-report.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% You will put your bibliography in this file, use "online" for web
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@online{web001,
title = {Word2vec},
url = {https://www.tensorflow.org/tutorials/word2vec/},
}
@online{web004,
title = {fastText},
url = {https://github.com/facebookresearch/fastText} }
@online{web005,
title = {LSTM-analyticsvidhya},
url = {https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm} }
@online{web006,
title = {Python Def.},
url = {https://en.wikipedia.org/wiki/Python_(programming_language)},
}
@online{web007,
title = {Advantages-and-Disadvantages-of-Python},
url = {https://www.quora.com/What-are-advantages-and-disadvantages-of-Python},
}
@online{web008,
title = {GPUs},
url = {https://en.wikipedia.org/wiki/Graphics_processing_unit#Hardware},
}
@online{web009,
title = {nVIDIA},
url = {https://en.wikipedia.org/wiki/Nvidia},
}
@online{web010,
title = {HW acceleration},
url = {https://en.wikipedia.org/wiki/Hardware_acceleration},
}
@online{web011,
title = {NLP},
url = {https://en.wikipedia.org/wiki/Natural_language_processing},
}
@online{web012,
title = {NLM},
url = {https://machinelearningmastery.com/statistical-language-modeling-and-neural-language-models},
}
@online{web013,
title = {dynamic Rnn},
url = {https://r2rt.com/recurrent-neural-networks-in-tensorflow-ii.html},
}
@online{web014,
title = {Unrolling Rnn},
url = {https://machinelearningmastery.com/rnn-unrolling},
}
@online{web015,
title = {seq2seq learning with NNs},
url = {https://arxiv.org/pdf/1409.3215.pdf},
}
@online{web016,
title = {NMT with seq2seq},
url = {https://github.com/stanfordnlp/cs224n-winter17-notes/blob/master/notes6.pdf},
}
@online{web017,
title = {NMT-seq2seq},
url = {https://github.com/tensorflow/nmt},
}
@online{web018,
title = {encoder-decoder},
url = {https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/21_Machine_Translation.ipynb},
}
@online{web019,
title = {Attention in DNN},
url = {http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp},
}
@online{web020,
title = {Areas Attention},
url = {https://machinelearningmastery.com/attention-long-short-term-memory-recurrent-neural-networks},
}
@online{web021,
title = {frameworks},
url = {https://dzone.com/articles/8-best-deep-learning-frameworks} }
@online{web022,
title = {Tensors},
url = {https://www.tensorflow.org/programmers_guide/tensors} }
@online{web023,
title = {Variables},
url = {https://www.tensorflow.org/api_docs/python/tf/Variable} }
@online{web024,
title = {Constants},
url = {https://learningtensorflow.com/lesson4/} }
@online{web025,
title = {TensorFlow},
url = {https://www.tensorflow.org} }
@online{web026,
title = {stanford.edu},
url = {http://web.stanford.edu/class/cs20si/syllabus.html} }
@online{web027,
title = {RMSPropOptimizer},
url = {https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer} }
@online{web028,
title = {Backpropagation},
url = {https://en.wikipedia.org/wiki/Backpropagation} }
@online{web029,
title = {wsgi},
url = {https://wsgi.readthedocs.io/en/latest/} }
@online{web030,
title = {werkzeug},
url = {https://www.palletsprojects.com/p/werkzeug/} }
@online{web031,
title = {jinja},
url = {https://www.palletsprojects.com/p/jinja/} }
@online{web032,
title = {Wikipedia},
url = {https://dumps.wikimedia.org/enwiki/latest/}
}
@online{web033,
title = {Wikipediaextractor},
url = {https://github.com/attardi/wikiextractor/}
}
@online{web034,
title = {wikimovies},
url = {https://research.fb.com/downloads/babi/}
}
@online{web035,
title = {WebQuestions},
url = {https://nlp.stanford.edu/software/sempre/}
}
@online{web036,
title = {Trec},
url = {https://trec.nist.gov/data/qa.html}
}
@online{web037,
title = {featurization},
url = {https://datascience.stackexchange.com/questions/586/what-are-the-main-types-of-nlp-annotators}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@inproceedings{Gal:2016:TGA:3157096.3157211,
author = {Gal, Yarin and Ghahramani, Zoubin},
title = {A Theoretically Grounded Application of Dropout in Recurrent Neural Networks},
booktitle = {Proceedings of the 30th International Conference on Neural Information Processing Systems},
series = {NIPS'16},
year = {2016},
isbn = {978-1-5108-3881-9},
location = {Barcelona, Spain},
pages = {1027--1035},
numpages = {9},
url = {http://dl.acm.org/citation.cfm?id=3157096.3157211},
acmid = {3157211},
publisher = {Curran Associates Inc.},
address = {USA},
}
@inproceedings{69e088c8129341ac89810907fe6b1bfe,
title = "Empirical evaluation of gated recurrent neural networks on sequence modeling",
author = "Junyoung Chung and Caglar Gulcehre and Kyunghyun Cho and Yoshua Bengio",
year = "2014",
language = "English (US)",
booktitle = "NIPS 2014 Workshop on Deep Learning, December 2014",
}
@article{Hochreiter:1997:LSM:1246443.1246450,
author = {Hochreiter, Sepp and Schmidhuber, J\" { u } rgen},
title = {Long Short-Term Memory},
journal = {Neural Comput.},
issue_date = {November 15, 1997},
volume = {9},
number = {8},
month = nov,
year = {1997},
issn = {0899-7667},
pages = {1735--1780},
numpages = {46},
url = {http://dx.doi.org/10.1162/neco.1997.9.8.1735},
doi = {10.1162/neco.1997.9.8.1735},
acmid = {1246450},
publisher = {MIT Press},
address = {Cambridge, MA, USA},
}
@ARTICLE{Chung-et-al-TR2014,
author = {Chung, Junyoung and G { \" { u } } l { \c c } ehre, { \c C } ağlar and Cho, Kyunghyun and Bengio, Yoshua},
title = {Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling},
journal = {arXiv e-prints},
volume = {abs/1412.3555},
year = {2014},
note = {Presented at the Deep Learning workshop at NIPS2014},
url = {https://arxiv.org/abs/1412.3555}
}
@book{bazerman1988shaping,
title = {Shaping written knowledge: The genre and activity of the experimental article in science},
author = {Bazerman, Charles and others},
volume = {356},
year = {1988},
publisher = {University of Wisconsin Press Madison}
}
@article{DBLP:journals/corr/abs-1301-3781,
author = {Tomas Mikolov and
Kai Chen and
Greg Corrado and
Jeffrey Dean},
title = {Efficient Estimation of Word Representations in Vector Space},
journal = {CoRR},
volume = {abs/1301.3781},
year = {2013},
url = {http://arxiv.org/abs/1301.3781},
archivePrefix = {arXiv},
eprint = {1301.3781},
timestamp = {Wed, 07 Jun 2017 14:42:25 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1301-3781},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/MikolovSCCD13,
author = {Tomas Mikolov and
Ilya Sutskever and
Kai Chen and
Greg Corrado and
Jeffrey Dean},
title = {Distributed Representations of Words and Phrases and their Compositionality},
journal = {CoRR},
volume = {abs/1310.4546},
year = {2013},
url = {http://arxiv.org/abs/1310.4546},
archivePrefix = {arXiv},
eprint = {1310.4546},
timestamp = {Wed, 07 Jun 2017 14:40:03 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/MikolovSCCD13},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{pennington2014glove,
author = {Jeffrey Pennington and Richard Socher and Christopher D. Manning},
booktitle = {Empirical Methods in Natural Language Processing (EMNLP)},
title = {GloVe: Global Vectors for Word Representation},
year = {2014},
pages = {1532--1543},
url = {http://www.aclweb.org/anthology/D14-1162},
}
@inproceedings{DBLP:conf/acl/YinS16,
author = {Wenpeng Yin and
Hinrich Sch { \" { u }} tze},
title = {Learning Word Meta-Embeddings},
booktitle = {Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, { ACL } 2016, August 7-12, 2016, Berlin, Germany, Volume
1: Long Papers},
year = {2016},
url = {http://aclweb.org/anthology/P/P16/P16-1128.pdf},
timestamp = {Wed, 01 Feb 2017 10:48:29 +0100},
biburl = {https://dblp.org/rec/bib/conf/acl/YinS16},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/Dyer14,
author = {Chris Dyer},
title = {Notes on Noise Contrastive Estimation and Negative Sampling},
journal = {CoRR},
volume = {abs/1410.8251},
year = {2014},
url = {http://arxiv.org/abs/1410.8251},
archivePrefix = {arXiv},
eprint = {1410.8251},
timestamp = {Wed, 07 Jun 2017 14:42:59 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/Dyer14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{levy2014dependencybased,
added-at = {2014-12-13T13:15:51.000+0100},
address = {Baltimore, Maryland},
author = {Levy, Omer and Goldberg, Yoav},
biburl = {https://www.bibsonomy.org/bibtex/2c08ef42c3320976b65a9833180815f0e/gchrupala},
booktitle = {Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)},
interhash = {ec04086ee882f28c71d67260e100f2e5},
intrahash = {c08ef42c3320976b65a9833180815f0e},
keywords = {imported},
month = {June},
pages = {302--308},
publisher = {Association for Computational Linguistics},
timestamp = {2014-12-13T13:16:07.000+0100},
title = {Dependency-Based Word Embeddings},
url = {http://www.aclweb.org/anthology/P14-2050},
year = 2014
}
@misc{tensorflow2015-whitepaper,
title ={ { TensorFlow } : Large-Scale Machine Learning on Heterogeneous Systems},
url ={https://www.tensorflow.org/},
note ={Software available from tensorflow.org},
author ={
Mart\' { \i } n~Abadi and
Ashish~Agarwal and
Paul~Barham and
Eugene~Brevdo and
Zhifeng~Chen and
Craig~Citro and
Greg~S.~Corrado and
Andy~Davis and
Jeffrey~Dean and
Matthieu~Devin and
Sanjay~Ghemawat and
Ian~Goodfellow and
Andrew~Harp and
Geoffrey~Irving and
Michael~Isard and
Yangqing Jia and
Rafal~Jozefowicz and
Lukasz~Kaiser and
Manjunath~Kudlur and
Josh~Levenberg and
Dandelion~Man\' { e } and
Rajat~Monga and
Sherry~Moore and
Derek~Murray and
Chris~Olah and
Mike~Schuster and
Jonathon~Shlens and
Benoit~Steiner and
Ilya~Sutskever and
Kunal~Talwar and
Paul~Tucker and
Vincent~Vanhoucke and
Vijay~Vasudevan and
Fernanda~Vi\' { e } gas and
Oriol~Vinyals and
Pete~Warden and
Martin~Wattenberg and
Martin~Wicke and
Yuan~Yu and
Xiaoqiang~Zheng},
year ={2015},
}
@incollection{NIPS2009_3793,
title = {Efficient Learning using Forward-Backward Splitting},
author = {Singer, Yoram and Duchi, John C},
booktitle = {Advances in Neural Information Processing Systems 22},
editor = {Y. Bengio and D. Schuurmans and J. D. Lafferty and C. K. I. Williams and A. Culotta},
pages = {495--503},
year = {2009},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf}
}
@inproceedings{41159,
title = {Ad Click Prediction: a View from the Trenches},
author = {H. Brendan McMahan and Gary Holt and D. Sculley and Michael Young and Dietmar Ebner and Julian Grady and Lan Nie and Todd Phillips and Eugene Davydov and Daniel Golovin and Sharat Chikkerur and Dan Liu and Martin Wattenberg and Arnar Mar Hrafnkelsson and Tom Boulos and Jeremy Kubica},
year = {2013},
booktitle = {Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)}}
@article{Duchi:2011:ASM:1953048.2021068,
author = {Duchi, John and Hazan, Elad and Singer, Yoram},
title = {Adaptive Subgradient Methods for Online Learning and Stochastic Optimization},
journal = {J. Mach. Learn. Res.},
issue_date = {2/1/2011},
volume = {12},
month = jul,
year = {2011},
issn = {1532-4435},
pages = {2121--2159},
numpages = {39},
url = {http://dl.acm.org/citation.cfm?id=1953048.2021068},
acmid = {2021068},
publisher = {JMLR.org},
}
@article{DBLP:journals/corr/abs-1212-5701,
author = {Matthew D. Zeiler},
title = {{ ADADELTA: } An Adaptive Learning Rate Method},
journal = {CoRR},
volume = {abs/1212.5701},
year = {2012},
url = {http://arxiv.org/abs/1212.5701},
archivePrefix = {arXiv},
eprint = {1212.5701},
timestamp = {Wed, 07 Jun 2017 14:43:02 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1212-5701},
bibsource = {dblp computer science bibliography, https://dblp.org}}
@inproceedings{deeplearning,
title = {Pro Deep Learning with TensorFlow},
author = {Santanu Pattanayak},
year = {2017},
booktitle = {A Mathematical Approach to Advanced Artificial Intelligence in Python}}
@article{DBLP:journals/corr/KingmaB14,
author = {Diederik P. Kingma and
Jimmy Ba},
title = {Adam: { A } Method for Stochastic Optimization},
journal = {CoRR},
volume = {abs/1412.6980},
year = {2014},
url = {http://arxiv.org/abs/1412.6980},
archivePrefix = {arXiv},
eprint = {1412.6980},
timestamp = {Wed, 07 Jun 2017 14:40:52 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/KingmaB14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/GravesWD14,
author = {Alex Graves and
Greg Wayne and
Ivo Danihelka},
title = {Neural Turing Machines},
journal = {CoRR},
volume = {abs/1410.5401},
year = {2014},
url = {http://arxiv.org/abs/1410.5401},
archivePrefix = {arXiv},
eprint = {1410.5401},
timestamp = {Wed, 07 Jun 2017 14:42:19 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/GravesWD14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/SutskeverVL14,
author = {Ilya Sutskever and
Oriol Vinyals and
Quoc V. Le},
title = {Sequence to Sequence Learning with Neural Networks},
journal = {CoRR},
volume = {abs/1409.3215},
year = {2014},
url = {http://arxiv.org/abs/1409.3215},
archivePrefix = {arXiv},
eprint = {1409.3215},
timestamp = {Wed, 07 Jun 2017 14:40:10 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/SutskeverVL14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/BahdanauCB14,
author = {Dzmitry Bahdanau and
Kyunghyun Cho and
Yoshua Bengio},
title = {Neural Machine Translation by Jointly Learning to Align and Translate},
journal = {CoRR},
volume = {abs/1409.0473},
year = {2014},
url = {http://arxiv.org/abs/1409.0473},
archivePrefix = {arXiv},
eprint = {1409.0473},
timestamp = {Wed, 07 Jun 2017 14:40:19 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/BahdanauCB14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/LuongPM15,
author = {Minh { - } Thang Luong and
Hieu Pham and
Christopher D. Manning},
title = {Effective Approaches to Attention-based Neural Machine Translation},
journal = {CoRR},
volume = {abs/1508.04025},
year = {2015},
url = {http://arxiv.org/abs/1508.04025},
archivePrefix = {arXiv},
eprint = {1508.04025},
timestamp = {Wed, 07 Jun 2017 14:41:36 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/LuongPM15},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@InProceedings{P17-1171,
author = "Chen, Danqi
and Fisch, Adam
and Weston, Jason
and Bordes, Antoine",
title = "Reading Wikipedia to Answer Open-Domain Questions",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) ",
year = "2017",
publisher = "Association for Computational Linguistics",
pages = "1870--1879",
location = "Vancouver, Canada",
doi = "10.18653/v1/P17-1171",
url = "http://www.aclweb.org/anthology/P17-1171"
}
@article{DBLP:journals/corr/ChenBM16a,
author = {Danqi Chen and
Jason Bolton and
Christopher D. Manning},
title = {A Thorough Examination of the CNN/Daily Mail Reading Comprehension
Task},
journal = {CoRR},
volume = {abs/1606.02858},
year = {2016},
url = {http://arxiv.org/abs/1606.02858},
archivePrefix = {arXiv},
eprint = {1606.02858},
timestamp = {Wed, 07 Jun 2017 14:41:57 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/ChenBM16a},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
ط@InProceedings{manning-EtAl:2014:P14-5,
author = {Manning, Christopher D. and Surdeanu, Mihai and Bauer, John and Finkel, Jenny and Bethard, Steven J. and McClosky, David},
title = {The {Stanford} {CoreNLP} Natural Language Processing Toolkit},
booktitle = {Association for Computational Linguistics (ACL) System Demonstrations},
year = {2014},
pages = {55--60},
url = {http://www.aclweb.org/anthology/P/P14/P14-5010}
}