The problem consists in finding an optimal processing order (a permutation) for
./main_pfsp.out {...}
where the available options are:
--inst
: instance to solvetaXXX
: Taillard's instance whereXXX
is the instance's index between001
and120
(ta014
by default)VFRi_j_k_Gap.txt
: VRF's instance wherei
is the number of jobs,j
the number of machines, andk
the instance's index
-
--lb
: lower bound function-
lb1
: one-machine bound which can be computed in$\mathcal{O}(mn)$ steps per subproblem (default) -
lb1_d
: fast implementation oflb1
, which can be compute in$\mathcal{O}(m)$ steps per subproblem -
lb2
: two-machine bound which can be computed in$\mathcal{O}(m^2n)$ steps per subproblem
-
-
--br
: branching rule, as defined in [3] (only available for--lb lb1_d
)-
fwd
: forward (default) -
bwd
: backward -
alt
: alternate -
maxSum
: MaxSum -
minMin
: MinMin -
minBranch
: MinBranch
-
-
--ub
: initial upper bound (UB)-
opt
: initialize the UB to the best solution known (default) -
inf
: initialize the UB to$+\infty$ , leading to a search from scratch -
{NUM}
: initialize the UB to the given number
-
- E. Taillard. (1993) Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2):278-285. DOI: 10.1016/0377-2217(93)90182-M.
- E. Vallada, R. Ruiz, and J. M. Framinan. (2015) New hard benchmark for flowshop scheduling problems minimising makespan. European Journal of Operational Research, 240(3):666-677. DOI: 10.1016/j.ejor.2014.07.033.
- J. Gmys, M. Mezmaz, N. Melab, and D. Tuyttens. (2020) A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem. European Journal of Operational Research, 284(3):814–833. DOI: 10.1016/j.ejor.2020.01.039.