|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Multicommodity Flow Example Using `gurobipy-pandas`\n", |
| 8 | + "\n", |
| 9 | + "#### Author: Irv Lustig, Optimization Principal, Princeton Consultants\n", |
| 10 | + "\n", |
| 11 | + "Solve a multi-commodity flow problem. There are multiple products, which can be \n", |
| 12 | + "produced in multiple locations, and have to be shipped over a network to other locations.\n", |
| 13 | + "Each location may have supply and/or demand for any product. The network may have\n", |
| 14 | + "transhipment locations where freight is interchanged. For each arc in the network, there is \n", |
| 15 | + "a limited capacity of the total products that can be carried. Each arc also has a product-specific\n", |
| 16 | + "cost for shipping one unit of the product on that arc.\n", |
| 17 | + "\n", |
| 18 | + "This example is based on `netflow.py` that is supplied by Gurobi.\n" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "markdown", |
| 23 | + "metadata": {}, |
| 24 | + "source": [ |
| 25 | + "#### Import necessary libraries\n", |
| 26 | + "\n", |
| 27 | + "- `IPython.display` is used to improve the display of `pandas` `Series` by converting them to `DataFrame` for output\n", |
| 28 | + "- `PyQt5.QtWidgets` allows prompting for a data file\n" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "code", |
| 33 | + "execution_count": null, |
| 34 | + "metadata": { |
| 35 | + "slideshow": { |
| 36 | + "slide_type": "slide" |
| 37 | + } |
| 38 | + }, |
| 39 | + "outputs": [], |
| 40 | + "source": [ |
| 41 | + "from IPython.display import display\n", |
| 42 | + "import pandas as pd\n", |
| 43 | + "import gurobipy as grb\n", |
| 44 | + "import gurobipy_pandas as gppd" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": null, |
| 50 | + "metadata": {}, |
| 51 | + "outputs": [], |
| 52 | + "source": [ |
| 53 | + "%gui qt\n", |
| 54 | + "\n", |
| 55 | + "from PyQt5.QtWidgets import QFileDialog\n", |
| 56 | + "\n", |
| 57 | + "def gui_fname(dir=None):\n", |
| 58 | + " \"\"\"Select a file via a dialog and return the file name.\"\"\"\n", |
| 59 | + " if dir is None: dir ='./'\n", |
| 60 | + " fname = QFileDialog.getOpenFileName(None, \"Select data file...\", \n", |
| 61 | + " dir, filter=\"All files (*);; SM Files (*.sm)\")\n", |
| 62 | + " return fname[0]" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "markdown", |
| 67 | + "metadata": {}, |
| 68 | + "source": [ |
| 69 | + "#### Get the file from a prompt" |
| 70 | + ] |
| 71 | + }, |
| 72 | + { |
| 73 | + "cell_type": "code", |
| 74 | + "execution_count": null, |
| 75 | + "metadata": {}, |
| 76 | + "outputs": [], |
| 77 | + "source": [ |
| 78 | + "filename = gui_fname()" |
| 79 | + ] |
| 80 | + }, |
| 81 | + { |
| 82 | + "cell_type": "markdown", |
| 83 | + "metadata": {}, |
| 84 | + "source": [ |
| 85 | + "#### Read Data using `pandas`\n", |
| 86 | + "\n", |
| 87 | + "Read in the data from an Excel file. Converts the data into a dictionary of `pandas` `Series`, with the assumption that the last column is the data column." |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": null, |
| 93 | + "metadata": { |
| 94 | + "slideshow": { |
| 95 | + "slide_type": "slide" |
| 96 | + } |
| 97 | + }, |
| 98 | + "outputs": [], |
| 99 | + "source": [ |
| 100 | + "raw_data = pd.read_excel(filename, sheet_name=None)\n", |
| 101 | + "data = {\n", |
| 102 | + " k: df.set_index(df.columns[:-1].to_list())[df.columns[-1]]\n", |
| 103 | + " for k, df in raw_data.items()\n", |
| 104 | + "}\n", |
| 105 | + "for k, v in data.items():\n", |
| 106 | + " print(k)\n", |
| 107 | + " display(v.to_frame())" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "markdown", |
| 112 | + "metadata": {}, |
| 113 | + "source": [ |
| 114 | + "# Data Model\n", |
| 115 | + "\n", |
| 116 | + "## Sets\n", |
| 117 | + "\n", |
| 118 | + "| Notation | Meaning | Table Locations |\n", |
| 119 | + "| ---- | --------------------------- | ----------- | \n", |
| 120 | + "| $\\mathcal N$ | Set of network nodes | `cost`: Columns `From`, `To` <br> `capacity`: Columns `From`, `To` <br> `supply`: Column `Node` <br> `demand`: Column `Node` |\n", |
| 121 | + "| $\\mathcal P$ | Set of products (commodities) | `cost`: Column `Product` <br> `supply`: Column `Product` <br> `demand`: Column `Product` |\n", |
| 122 | + "| $\\mathcal A$ | Set of arcs $(n_f,n_t)$, $n_f,n_t\\in\\mathcal A | `cost`: Columns `From`, `To` |\n", |
| 123 | + "| $\\mathcal P_a$ | Set of products $p\\in\\mathcal P$ that can be carried on arc $a\\in\\mathcal A$ | `cost`: Columns `Product`, `From`, `To` |\n", |
| 124 | + "| $\\mathcal A_p$ | Set of arcs $a\\in\\mathcal A$ that can carry product $p\\in\\mathcal P$ | `cost`: Columns `Product`, `From`, `To` |\n", |
| 125 | + "\n", |
| 126 | + "\n", |
| 127 | + "\n", |
| 128 | + "## Numerical Input Values\n", |
| 129 | + "\n", |
| 130 | + "The input data is converted to pandas `Series`, so the name of each `Series` is also the name of the value.\n", |
| 131 | + "\n", |
| 132 | + "| Notation | Meaning | Table Name/Value Column | Index Columns \n", |
| 133 | + "| ---- | --------------------------- | ------ | ---------- |\n", |
| 134 | + "| $\\kappa_a$ | Capacity of arc $a\\in\\mathcal A$ | `capacity` | `From`, `To` |\n", |
| 135 | + "| $\\pi_{ap}$ | Cost of carrying product $p$ on arc $a\\in\\mathcal A$, $p\\in\\mathcal P_a$, | `cost` | `Product`, `From`, `To` |\n", |
| 136 | + "| $\\sigma_{pn}$ | Supply of product $p\\in\\mathcal P$ at node $n\\in\\mathcal N$. Defaults to 0 | `supply` | `Node` |\n", |
| 137 | + "| $\\delta_{pn}$ | Demand of product $p\\in\\mathcal P$ at node $n\\in\\mathcal N$. Defaults to 0 | `demand` | `Node` |" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "markdown", |
| 142 | + "metadata": {}, |
| 143 | + "source": [ |
| 144 | + "## Compute Sets\n", |
| 145 | + "\n", |
| 146 | + "- The set $\\mathcal P$ of products can appear in any of the tables `supply`, `demand` and `cost` .\n", |
| 147 | + "- The set $\\mathcal N$ of nodes can appear in any of the tables `capacity`, `supply`, `demand` and `cost`" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "code", |
| 152 | + "execution_count": null, |
| 153 | + "metadata": {}, |
| 154 | + "outputs": [], |
| 155 | + "source": [ |
| 156 | + "commodities = set(\n", |
| 157 | + " pd.concat(\n", |
| 158 | + " [\n", |
| 159 | + " data[dfname].index.to_frame()[\"Product\"]\n", |
| 160 | + " for dfname in [\"supply\", \"demand\", \"cost\"]\n", |
| 161 | + " ]\n", |
| 162 | + " ).unique()\n", |
| 163 | + ")\n", |
| 164 | + "commodities" |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "code", |
| 169 | + "execution_count": null, |
| 170 | + "metadata": {}, |
| 171 | + "outputs": [], |
| 172 | + "source": [ |
| 173 | + "nodes = set(\n", |
| 174 | + " pd.concat(\n", |
| 175 | + " [\n", |
| 176 | + " data[dfname].index.to_frame()[fromto].rename(\"Node\")\n", |
| 177 | + " for dfname in [\"capacity\", \"cost\"]\n", |
| 178 | + " for fromto in [\"From\", \"To\"]\n", |
| 179 | + " ]\n", |
| 180 | + " + [data[dfname].index.to_frame()[\"Node\"] for dfname in [\"supply\", \"demand\"]]\n", |
| 181 | + " ).unique()\n", |
| 182 | + ")\n", |
| 183 | + "\n", |
| 184 | + "nodes" |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "markdown", |
| 189 | + "metadata": {}, |
| 190 | + "source": [ |
| 191 | + "### Compute the Net Flow for each node\n", |
| 192 | + "\n", |
| 193 | + "The net flow $\\mu_{pn}$ for each product $p\\in\\mathcal P$ and node $n\\in\\mathcal N$ is the sum of the supply less the demand. For transshipment nodes, this value is 0. This is called `inflow` in the code." |
| 194 | + ] |
| 195 | + }, |
| 196 | + { |
| 197 | + "cell_type": "code", |
| 198 | + "execution_count": null, |
| 199 | + "metadata": {}, |
| 200 | + "outputs": [], |
| 201 | + "source": [ |
| 202 | + "inflow = pd.concat(\n", |
| 203 | + " [\n", |
| 204 | + " data[\"supply\"].rename(\"net\"),\n", |
| 205 | + " data[\"demand\"].rename(\"net\") * -1,\n", |
| 206 | + " pd.Series(\n", |
| 207 | + " 0,\n", |
| 208 | + " index=pd.MultiIndex.from_product(\n", |
| 209 | + " [commodities, nodes], names=[\"Product\", \"Node\"]\n", |
| 210 | + " ),\n", |
| 211 | + " name=\"net\",\n", |
| 212 | + " ),\n", |
| 213 | + " ]\n", |
| 214 | + ").groupby([\"Product\", \"Node\"]).sum()\n", |
| 215 | + "inflow" |
| 216 | + ] |
| 217 | + }, |
| 218 | + { |
| 219 | + "cell_type": "markdown", |
| 220 | + "metadata": {}, |
| 221 | + "source": [ |
| 222 | + "## Create the Gurobi Model" |
| 223 | + ] |
| 224 | + }, |
| 225 | + { |
| 226 | + "cell_type": "code", |
| 227 | + "execution_count": null, |
| 228 | + "metadata": {}, |
| 229 | + "outputs": [], |
| 230 | + "source": [ |
| 231 | + "m = grb.Model(\"netflow\")" |
| 232 | + ] |
| 233 | + }, |
| 234 | + { |
| 235 | + "cell_type": "markdown", |
| 236 | + "metadata": {}, |
| 237 | + "source": [ |
| 238 | + "## Model\n", |
| 239 | + "\n", |
| 240 | + "### Decision Variables\n", |
| 241 | + "\n", |
| 242 | + "The model will have one set of decision variables:\n", |
| 243 | + "- $X_{pa}$ for $p\\in\\mathcal P$, $a\\in\\mathcal A_p$ represents the amount shipped of product $p$ on arc $a$. We will call this variable `flow` in the code.\n", |
| 244 | + "\n", |
| 245 | + "The cost of shipment is $\\pi_{ap}$. \n", |
| 246 | + "\n", |
| 247 | + "This defines the objective function:\n", |
| 248 | + "$$\n", |
| 249 | + "\\text{minimize}\\quad\\sum_{a\\in\\mathcal A}\\sum_{p\\in\\mathcal P_a} \\pi_{ap}X_{pa}\n", |
| 250 | + "$$" |
| 251 | + ] |
| 252 | + }, |
| 253 | + { |
| 254 | + "cell_type": "code", |
| 255 | + "execution_count": null, |
| 256 | + "metadata": {}, |
| 257 | + "outputs": [], |
| 258 | + "source": [ |
| 259 | + "flow = gppd.add_vars(m, data[\"cost\"], obj=data[\"cost\"], name=\"flow\")\n", |
| 260 | + "m.update()\n", |
| 261 | + "flow" |
| 262 | + ] |
| 263 | + }, |
| 264 | + { |
| 265 | + "cell_type": "markdown", |
| 266 | + "metadata": {}, |
| 267 | + "source": [ |
| 268 | + "### Constraints\n", |
| 269 | + "\n", |
| 270 | + "#### Flow on each arc is capacitated\n", |
| 271 | + "\n", |
| 272 | + "$$\n", |
| 273 | + "\\sum_{p\\in\\mathcal P_a} X_{pa} \\le \\kappa_a\\qquad\\forall a\\in\\mathcal A\n", |
| 274 | + "$$" |
| 275 | + ] |
| 276 | + }, |
| 277 | + { |
| 278 | + "cell_type": "code", |
| 279 | + "execution_count": null, |
| 280 | + "metadata": {}, |
| 281 | + "outputs": [], |
| 282 | + "source": [ |
| 283 | + "capct = pd.concat(\n", |
| 284 | + " [flow.groupby([\"From\", \"To\"]).agg(grb.quicksum), data[\"capacity\"]], axis=1\n", |
| 285 | + ").gppd.add_constrs(m, \"flow <= capacity\", name=\"cap\")\n", |
| 286 | + "m.update()\n", |
| 287 | + "capct" |
| 288 | + ] |
| 289 | + }, |
| 290 | + { |
| 291 | + "cell_type": "markdown", |
| 292 | + "metadata": {}, |
| 293 | + "source": [ |
| 294 | + "#### Conservation of Flow\n", |
| 295 | + "\n", |
| 296 | + "For each node and each product, the flow out of the node, less the flow into the node is equal to the net flow.\n", |
| 297 | + "\n", |
| 298 | + "$$\n", |
| 299 | + "\\sum_{(n, n_t)\\in A_p} X_{p(n,n_t)} - \\sum_{(n_f, n)} X_{p(n_f,n)} = \\mu_{pn}\\qquad\\forall p\\in\\mathcal P, n\\in\\mathcal N\n", |
| 300 | + "$$" |
| 301 | + ] |
| 302 | + }, |
| 303 | + { |
| 304 | + "cell_type": "code", |
| 305 | + "execution_count": null, |
| 306 | + "metadata": {}, |
| 307 | + "outputs": [], |
| 308 | + "source": [ |
| 309 | + "flowct = pd.concat(\n", |
| 310 | + " [\n", |
| 311 | + " flow.rename_axis(index={\"From\": \"Node\"})\n", |
| 312 | + " .groupby([\"Product\", \"Node\"])\n", |
| 313 | + " .agg(grb.quicksum)\n", |
| 314 | + " .rename(\"flowout\"),\n", |
| 315 | + " flow.rename_axis(index={\"To\": \"Node\"})\n", |
| 316 | + " .groupby([\"Product\", \"Node\"])\n", |
| 317 | + " .agg(grb.quicksum)\n", |
| 318 | + " .rename(\"flowin\"),\n", |
| 319 | + " inflow,\n", |
| 320 | + " ],\n", |
| 321 | + " axis=1,\n", |
| 322 | + ").fillna(0).gppd.add_constrs(m, \"flowout - flowin == net\", name=\"node\")\n", |
| 323 | + "m.update()\n", |
| 324 | + "flowct" |
| 325 | + ] |
| 326 | + }, |
| 327 | + { |
| 328 | + "cell_type": "markdown", |
| 329 | + "metadata": {}, |
| 330 | + "source": [ |
| 331 | + "# Optimize!" |
| 332 | + ] |
| 333 | + }, |
| 334 | + { |
| 335 | + "cell_type": "code", |
| 336 | + "execution_count": null, |
| 337 | + "metadata": {}, |
| 338 | + "outputs": [], |
| 339 | + "source": [ |
| 340 | + "m.optimize()" |
| 341 | + ] |
| 342 | + }, |
| 343 | + { |
| 344 | + "cell_type": "markdown", |
| 345 | + "metadata": {}, |
| 346 | + "source": [ |
| 347 | + "# Get the Solution\n", |
| 348 | + "\n", |
| 349 | + "Only print out arcs with flow, using pandas" |
| 350 | + ] |
| 351 | + }, |
| 352 | + { |
| 353 | + "cell_type": "code", |
| 354 | + "execution_count": null, |
| 355 | + "metadata": {}, |
| 356 | + "outputs": [], |
| 357 | + "source": [ |
| 358 | + "soln = flow.gppd.X\n", |
| 359 | + "soln.to_frame().query(\"flow > 0\").sort_index()" |
| 360 | + ] |
| 361 | + } |
| 362 | + ], |
| 363 | + "metadata": { |
| 364 | + "kernelspec": { |
| 365 | + "display_name": "gurobi1100py311", |
| 366 | + "language": "python", |
| 367 | + "name": "python3" |
| 368 | + }, |
| 369 | + "language_info": { |
| 370 | + "codemirror_mode": { |
| 371 | + "name": "ipython", |
| 372 | + "version": 3 |
| 373 | + }, |
| 374 | + "file_extension": ".py", |
| 375 | + "mimetype": "text/x-python", |
| 376 | + "name": "python", |
| 377 | + "nbconvert_exporter": "python", |
| 378 | + "pygments_lexer": "ipython3", |
| 379 | + "version": "3.11.3" |
| 380 | + } |
| 381 | + }, |
| 382 | + "nbformat": 4, |
| 383 | + "nbformat_minor": 2 |
| 384 | +} |
0 commit comments